Skip to main content
Log in

Correlation of texture analysis of paraspinal musculature on MRI with different clinical endpoints: Lumbar Stenosis Outcome Study (LSOS)

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to apply texture analysis (TA) on paraspinal musculature in T2-weighted (T2w) magnetic resonance images (MRI) of symptomatic lumbar spinal stenosis (LSS) patients and correlate the findings with clinical outcome measures.

Methods

Ninety patients were prospectively enrolled in the multi-centric Lumbar Stenosis Outcome Study (LSOS). All patients received a T2w MRI, from which we selected axial images perpendicular to the intervertebral disc at level L3/4 for TA. Regions-of-interest (ROI) were drawn of the paraspinal musculature and 304 TA features/ ROI were calculated. As clinical outcome measurements, we analysed three commonly applied measures: Spinal Stenosis Measure (SSM), Roland-Morris Disability Questionnaire (RMDQ), as well as the Numeric Rating Scale (NRS). We used two machine learning-based classifiers: Decision table, and k-nearest neighbours (k-NN).

Results

We observed no meaningful correlation between TA in paraspinal musculature and the two clinical outcome measures SSM symptoms and SSM function, while a moderate correlation was observed regarding the outcome measures RMDQ (k-NN: r = 0.56) and NRS (Decision Table: r = 0.72).

Conclusions

In conclusion, MR TA is a viable tool to quantify medical images and illustrate correlations of microarchitectural changes invisible to a human reader with potential clinical impact.

Key Points

• TA is feasible on paraspinal musculature using MRI.

• TA on paraspinal musculature correlates with SSM and RMDQ.

• TA may enable a statement regarding clinical impact of imaging findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

BMI:

Body-mass-index

CSA:

Cross-sectional muscle area

DICOM:

Digital imaging and communications in medicine

GLCM:

Grey-level co-occurrence matrix

k-NN:

k-Nearest Neighbour

LBP:

Lumbar back pain

LSS:

Lumbar spinal stenosis

MRI:

Magnetic resonance imaging

NRS:

Numeric rating scale (pain)

PACS:

Picture archiving and communication system

RLM:

Run-length matrix

RMDQ:

Roland-Morris-disability questionnaire

ROC:

Receiver-operating characteristics

ROI:

Region of interest

SSM:

Spinal stenosis measure

TA:

Texture analysis

TSE:

Turbo spin echo

References

  1. Waddell G (1996) Low back pain: a twentieth century health care enigma. Spine (Phila Pa 1976) 21:2820–2825

    Article  CAS  Google Scholar 

  2. Lurie J, Tomkins-Lane C (2016) Management of lumbar spinal stenosis. BMJ 352:h6234

    Article  Google Scholar 

  3. Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG (2010) Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA 303:1259–1265

    Article  CAS  Google Scholar 

  4. Fortin M, Lazary A, Varga PP, Battie MC (2017) Association between paraspinal muscle morphology, clinical symptoms and functional status in patients with lumbar spinal stenosis. Eur Spine J. https://doi.org/10.1007/s00586-017-5228-y

  5. Airaksinen O, Brox JI, Cedraschi C et al (2006) Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur Spine J 15(Suppl 2):S192–S300

    Article  Google Scholar 

  6. de Bruin F, ter Horst S, Bloem HL et al (2016) Prevalence of degenerative changes of the spine on magnetic resonance images and radiographs in patients aged 16-45 years with chronic back pain of short duration in the Spondyloarthritis Caught Early (SPACE) cohort. Rheumatology (Oxford) 55:56–65

    Article  Google Scholar 

  7. Savage RA, Whitehouse GH, Roberts N (1997) The relationship between the magnetic resonance imaging appearance of the lumbar spine and low back pain, age and occupation in males. Eur Spine J 6:106–114

    Article  CAS  Google Scholar 

  8. Brinjikji W, Luetmer PH, Comstock B et al (2015) Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 36:811–816

    Article  CAS  Google Scholar 

  9. Beattie PF, Meyers SP, Stratford P, Millard RW, Hollenberg GM (2000) Associations between patient report of symptoms and anatomic impairment visible on lumbar magnetic resonance imaging. Spine (Phila Pa 1976) 25:819–828

    Article  CAS  Google Scholar 

  10. Burgstaller JM, Schuffler PJ, Buhmann JM et al (2016) Is there an association between pain and magnetic resonance imaging parameters in patients with lumbar spinal stenosis? Spine (Phila Pa 1976) 41:E1053–E1062

    Article  Google Scholar 

  11. Leinonen V, Maatta S, Taimela S et al (2002) Impaired lumbar movement perception in association with postural stability and motor- and somatosensory-evoked potentials in lumbar spinal stenosis. Spine (Phila Pa 1976) 27:975–983

    Article  Google Scholar 

  12. Ranger TA, Cicuttini FM, Jensen TS et al (2017) Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. Spine J 17:1729–1748

    Article  Google Scholar 

  13. Kalichman L, Hodges P, Li L, Guermazi A, Hunter DJ (2010) Changes in paraspinal muscles and their association with low back pain and spinal degeneration: CT study. Eur Spine J 19:1136–1144

    Article  Google Scholar 

  14. Keller A, Gunderson R, Reikeras O, Brox JI (2003) Reliability of computed tomography measurements of paraspinal muscle cross-sectional area and density in patients with chronic low back pain. Spine (Phila Pa 1976) 28:1455–1460

    Google Scholar 

  15. Ingrisch M, Schneider MJ, Norenberg D et al (2017) Radiomic analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Investig Radiol. https://doi.org/10.1097/RLI.0000000000000349

  16. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Article  CAS  Google Scholar 

  17. Kolossvary M, Kellermayer M, Merkely B, Maurovich-Horvat P (2017) Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging. https://doi.org/10.1097/RTI.0000000000000268

  18. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  CAS  Google Scholar 

  19. Tourassi GD (1999) Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 213:317–320

    Article  CAS  Google Scholar 

  20. De Certaines J, Larcher T, Duda D et al (2015) Application of texture analysis to muscle MRI: 1-What kind of information should be expected from texture analysis? EPJ Nonlinear Biomedical Physics 3

  21. Li Y, Liu X, Xu K et al (2018) MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 28:356–362

    Article  Google Scholar 

  22. Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2016) Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol. https://doi.org/10.1007/s00330-016-4637-3

  23. Liu S, Liu S, Ji C et al (2017) Application of CT texture analysis in predicting histopathological characteristics of gastric cancers. Eur Radiol 27:4951–4959

    Article  Google Scholar 

  24. Bates A, Miles K (2017) Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer. Eur Radiol 27:5290–5298

    Article  Google Scholar 

  25. Gondim Teixeira PA, Leplat C, Chen B et al (2017) Contrast-enhanced 3T MR perfusion of musculoskeletal tumours: T1 value heterogeneity assessment and evaluation of the influence of T1 estimation methods on quantitative parameters. Eur Radiol 27:4903–4912

    Article  Google Scholar 

  26. Lisson CS, Lisson CG, Flosdorf K et al (2017) Diagnostic value of MRI-based 3D texture analysis for tissue characterisation and discrimination of low-grade chondrosarcoma from enchondroma: a pilot study. Eur Radiol. https://doi.org/10.1007/s00330-017-5014-6

  27. Bresnahan LE, Smith JS, Ogden AT et al (2016) Assessment of paraspinal muscle cross-sectional area following lumbar decompression: minimally invasive versus open approaches. Clin Spine Surg. https://doi.org/10.1097/BSD.0000000000000038

  28. Ulrich NH, Burgstaller JM, Held U et al (2017) The influence of single-level versus multilevel decompression on the outcome in multisegmental lumbar spinal stenosis: analysis of the Lumbar Spinal Outcome Study (LSOS) data. Clin Spine Surg. https://doi.org/10.1097/BSD.0000000000000469

  29. Aichmair A, Burgstaller JM, Schwenkglenks M et al (2017) Cost-effectiveness of conservative versus surgical treatment strategies of lumbar spinal stenosis in the Swiss setting: analysis of the prospective multicenter Lumbar Stenosis Outcome Study (LSOS). Eur Spine J 26:501–509

    Article  CAS  Google Scholar 

  30. Stucki G, Liang MH, Fossel AH, Katz JN (1995) Relative responsiveness of condition-specific and generic health status measures in degenerative lumbar spinal stenosis. J Clin Epidemiol 48:1369–1378

    Article  CAS  Google Scholar 

  31. Stucki G, Daltroy L, Liang MH, Lipson SJ, Fossel AH, Katz JN (1996) Measurement properties of a self-administered outcome measure in lumbar spinal stenosis. Spine (Phila Pa 1976) 21:796–803

    Article  CAS  Google Scholar 

  32. Roland M, Morris R (1983) A study of the natural history of back pain. Part I: development of a reliable and sensitive measure of disability in low-back pain. Spine (Phila Pa 1976) 8:141–144

    Article  CAS  Google Scholar 

  33. Stratford PW, Binkley J, Solomon P, Finch E, Gill C, Moreland J (1996) Defining the minimum level of detectable change for the Roland-Morris questionnaire. Phys Ther 76:359–365 discussion 366-358

    Article  CAS  Google Scholar 

  34. Childs JD, Piva SR, Fritz JM (2005) Responsiveness of the numeric pain rating scale in patients with low back pain. Spine (Phila Pa 1976) 30:1331–1334

    Article  Google Scholar 

  35. Szczypinski PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda--a software package for image texture analysis. Comput Methods Prog Biomed 94:66–76

    Article  Google Scholar 

  36. Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91

    Article  CAS  Google Scholar 

  37. Orphanidou-Vlachou E, Vlachos N, Davies NP, Arvanitis TN, Grundy RG, Peet AC (2014) Texture analysis of T1 - and T2 -weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumours in children. NMR Biomed 27:632–639

    Article  Google Scholar 

  38. Tahir F, Fahiem MA (2014) A statistical-textural-features based approach for classification of solid drugs using surface microscopic images. Comput Math Methods Med 2014:791246

    Article  Google Scholar 

  39. Szczypiński PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda - the software package for textural analysis of biomedical images. Springer, Berlin

    Book  Google Scholar 

  40. Crawford RJ, Cornwall J, Abbott R, Elliott JM (2017) Manually defining regions of interest when quantifying paravertebral muscles fatty infiltration from axial magnetic resonance imaging: a proposed method for the lumbar spine with anatomical cross-reference. BMC Musculoskelet Disord 18:25

    Article  Google Scholar 

  41. Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R (2017) Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology. https://doi.org/10.1148/radiol.2017170213:170213

  42. Dobbin KK, Simon RM (2011) Optimally splitting cases for training and testing high dimensional classifiers. BMC Med Genet 4:31

    Google Scholar 

  43. Dwyer B, Hutchings K (1977) Flowchart optimisation in cope, a multi-choice decision table. Aust Comp J 9:92

    Google Scholar 

  44. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46:175–185

    Google Scholar 

  45. Mannil M, Burgstaller JM, Thanabalasingam A et al (2018) Texture analysis of paraspinal musculature in MRI of the lumbar spine: analysis of the Lumbar Stenosis Outcome Study (LSOS) data. Skeletal Radiol. https://doi.org/10.1007/s00256-018-2919-3

  46. Goubert D, De Pauw R, Meeus M et al (2017) Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study. Spine J 17:1285–1296

    Article  Google Scholar 

  47. Abbas J, Slon V, May H, Peled N, Hershkovitz I, Hamoud K (2016) Paraspinal muscles density: a marker for degenerative lumbar spinal stenosis? BMC Musculoskelet Disord 17:422

    Article  Google Scholar 

  48. Leinonen V, Maatta S, Taimela S et al (2003) Paraspinal muscle denervation, paradoxically good lumbar endurance, and an abnormal flexion-extension cycle in lumbar spinal stenosis. Spine (Phila Pa 1976) 28:324–331

    Google Scholar 

  49. Teichtahl AJ, Urquhart DM, Wang Y et al (2015) Physical inactivity is associated with narrower lumbar intervertebral discs, high fat content of paraspinal muscles and low back pain and disability. Arthritis Res Ther 17:114

    Article  Google Scholar 

  50. Knutsson B, Sanden B, Sjoden G, Jarvholm B, Michaelsson K (2015) Body mass index and risk for clinical lumbar spinal stenosis: a cohort study. Spine (Phila Pa 1976) 40:1451–1456

    Article  Google Scholar 

  51. Fanuele JC, Abdu WA, Hanscom B, Weinstein JN (2002) Association between obesity and functional status in patients with spine disease. Spine (Phila Pa 1976) 27:306–312

    Article  Google Scholar 

  52. Rihn JA, Radcliff K, Hilibrand AS et al (2012) Does obesity affect outcomes of treatment for lumbar stenosis and degenerative spondylolisthesis? Analysis of the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976) 37:1933–1946

    Article  Google Scholar 

  53. Onyekwelu I, Glassman SD, Asher AL, Shaffrey CI, Mummaneni PV, Carreon LY (2017) Impact of obesity on complications and outcomes: a comparison of fusion and nonfusion lumbar spine surgery. J Neurosurg Spine 26:158–162

    Article  Google Scholar 

  54. Goubert D, Oosterwijck JV, Meeus M, Danneels L (2016) Structural changes of lumbar muscles in non-specific low back pain: a systematic review. Pain Physician 19:E985–E1000

    PubMed  Google Scholar 

Download references

Funding

This study has received funding by Helmut Horten Foundation, Baugarten Foundation, Pfizer-Foundation for geriatrics & research in geriatrics, Symphasis Charitable Foundation and OPO Foundation funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Guggenberger.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Roman Guggenberger, MD.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

Ulrike Held and Jakob M. Burgstaller kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

http://www.lumbalstenose.ch/home/

Methodology

• retrospective

• observational

• multicentre study

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannil, M., Burgstaller, J.M., Held, U. et al. Correlation of texture analysis of paraspinal musculature on MRI with different clinical endpoints: Lumbar Stenosis Outcome Study (LSOS). Eur Radiol 29, 22–30 (2019). https://doi.org/10.1007/s00330-018-5552-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5552-6

Keywords

Navigation