Multiparametric MRI for Suspected Recurrent Prostate Cancer after HIFU:Is DCE still needed?

  • Raïssa Lotte
  • Alexandre Lafourcade
  • Pierre Mozer
  • Pierre Conort
  • Eric Barret
  • Eva Comperat
  • Malek Ezziane
  • Paul-Hugo Jouve de Guibert
  • Sebastian Tavolaro
  • Lisa Belin
  • Franck Boudghene
  • Olivier Lucidarme
  • Raphaële Renard-Penna
Urogenital

Abstract

Purpose

To assess the added value of the dynamic contrast-enhanced sequence (DCE) to combination T2-weighted imaging (T2w) + diffusion-weighted imaging (DWI) in detecting prostate cancer (PCa) recurrence after HIFU (high-intensity focused ultrasound).

Methods

Forty-five males with clinical and biological suspected PCa recurrence were retrospectively selected. All underwent multi-parametric MRI (mpMRI) before biopsies. Two readers independently assigned a Likert score of cancer likelihood on T2w + DWI + DCE and T2w + DWI images. Prostatic biopsies were taken as the gold standard.

Results

Recurrent PCa was identified at biopsy for 37 patients (82%). Areas under the receiver-operating curve of T2w + DWI and T2w + DWI + DCE imaging were not significantly different for both readers. Using a Likert score ≥ 3 for the PCa diagnosis threshold, sensitivity at the lobe level for the (1) senior and (2) junior reader for T2w +DWI +DCE sensitivity was (1) 0.97 and (2) 0.94 vs. (1) 0.94 and (2) 0.97 for T2w + DWI.

Conclusion

Accuracy of mpMRI was not significantly improved by adding DCE to T2w + DWI. Sensitivity was high for T2w + DWI + DCE and T2w + DWI with no significant difference for either the junior or senior reader.

Key Points

• MpMRI has the capability to detect PCa recurrence in post-HIFU monitoring.

• The sensitivity of T2w and DWI for detecting PCa recurrence was not improved by DCE.

• Readers with different degrees of experience did not improve their performance with DCE.

Keywords

Prostate cancer Neoplasm recurrence, local High-intensity focused ultrasound ablation Diffusion magnetic resonance imaging Contrast media 

Abbreviations

3D

3-dimensional

ADC

Apparent diffusion coefficient

AS

Anterior fibromuscular stroma

AUROC

Area under the ROC curve

CSC

Confidential interval

CI

Clinically significant cancer

DCE

Dynamic contrast enhancement sequence

Dw

Diffusion- weighted imaging

ERBT

External beam radiation therapy

HIFU

High-intensity focused ultrasound

IQR

Interquartile range

mpMRI

Multiparametric magnetic resonance imaging

MRI

Magnetic resonance imaging

PCa

Prostate cancer

PSA

Prostate-specific antigen

ROI

Region of interest

ROC

Receiver-operating characteristic

Se

Sensitivity

Sp

Specificity

STB

Standard biopsy

T2w

T2-weighted imaging

TB

Targeted biopsies

TRUS

Trans-rectal ultrasound

Notes

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Raphaele Renard Penna.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

Alexandre Lafourcade and Lisa Belin (Hopital Pitié Salpétrière) kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was not required because the methodology of the study was retrospective on imaging materials, without any supplementary interventions than routine practice for medical care.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Supplementary material

330_2018_5352_MOESM1_ESM.docx (117 kb)
ESM 1 (DOCX 117 kb)

References

  1. 1.
    Sartor AO, Hricak H, Wheeler TM et al (2008) Evaluating localized prostate cancer and identifying candidates for focal therapy. Urology 72:S12–S24CrossRefPubMedGoogle Scholar
  2. 2.
    Valerio M, Ahmed HU, Emberton M et al (2014) The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol 66:732–751CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ganzer R, Fritsche H-M, Brandtner A et al (2013) Fourteen-year oncological and functional outcomes of high-intensity focused ultrasound in localized prostate cancer. BJU Int 112:322–329CrossRefPubMedGoogle Scholar
  4. 4.
    Abdel-Wahab M, Pollack A (2010) Prostate cancer: Defining biochemical failure in patients treated with HIFU. Nat Rev Urol 7:186–187CrossRefPubMedGoogle Scholar
  5. 5.
    Loeb S, Vellekoop A, Ahmed HU et al (2013) Systematic review of complications of prostate biopsy. Eur Urol 64:876–892CrossRefPubMedGoogle Scholar
  6. 6.
    Moore CM, Kasivisvanathan V, Eggener S et al (2013) Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an International Working Group. Eur Urol 64:544–552CrossRefPubMedGoogle Scholar
  7. 7.
    Scheltema MJ, Tay KJ, Postema AW et al (2017) Utilization of multiparametric prostate magnetic resonance imaging in clinical practice and focal therapy: report from a Delphi consensus project. World J Urol 35:695–701CrossRefPubMedGoogle Scholar
  8. 8.
    Rouvière O, Girouin N, Glas L et al (2010) Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI. Eur Radiol 20:48–55CrossRefPubMedGoogle Scholar
  9. 9.
    Kim CK, Park BK, Lee HM (2009) Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3T diffusion-weighted MRI. J Magn Reson Imaging JMRI 29:391–397CrossRefPubMedGoogle Scholar
  10. 10.
    Punwani S, Emberton M, Walkden M et al (2012) Prostatic cancer surveillance following whole-gland high-intensity focused ultrasound: comparison of MRI and prostate-specific antigen for detection of residual or recurrent disease. Br J Radiol 85:720–728CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hoquetis L, Malavaud B, Game X et al (2016) MRI evaluation following partial HIFU therapy for localized prostate cancer: A single-center study. Prog Urol 26:517–523CrossRefPubMedGoogle Scholar
  12. 12.
    Rouvière O, Dagonneau T, Cros F et al (2017) Diagnostic value and relative weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers. PLOS ONE 12:e0178901CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ramalho J, Ramalho M, Jay M et al (2016) Gadolinium toxicity and treatment. Magn Reson Imaging 34:1394–1398CrossRefPubMedGoogle Scholar
  14. 14.
    Reeder SB, Gulani V (2016) Gadolinium deposition in the brain: Do we know enough to change practice? Radiology 279:323–326CrossRefPubMedGoogle Scholar
  15. 15.
    Conte G, Preda L, Cocorocchio E et al (2017) Signal intensity change on unenhanced T1-weighted images in dentate nucleus and globus pallidus after multiple administrations of gadoxetate disodium: an intraindividual comparative study. Eur Radiol.  https://doi.org/10.1007/s00330-017-4810-3
  16. 16.
    D’Amico AV, Moul J, Carroll PR et al (2003) Cancer-specific mortality after surgery or radiation for patients with clinically localized prostate cancer managed during the prostate-specific antigen era. J Clin Oncol 21:2163–2172CrossRefPubMedGoogle Scholar
  17. 17.
    de la Rosette J, Ahmed H, Barentsz J et al (2010) Focal therapy in prostate cancer-report from a consensus panel. J Endourol 24:775–780CrossRefPubMedGoogle Scholar
  18. 18.
    Rozet F, Bastide C, Beuzeboc P et al (2015) Prise en charge des tumeurs de la prostate à faible risque évolutif. Prog En Urol 25:1–10CrossRefGoogle Scholar
  19. 19.
    Renard-Penna R, Rouprêt M, Comperat E et al (2013) Accuracy of high resolution (1.5 tesla) pelvic phased array magnetic resonance imaging (MRI) in staging prostate cancer in candidates for radical prostatectomy: Results from a prospective study. Urol Oncol 31:448–454CrossRefPubMedGoogle Scholar
  20. 20.
    Renard-Penna R, Mozer P, Cornud F et al (2015) Prostate imaging reporting and data system and Likert scoring system: multiparametric MR imaging validation study to screen patients for initial biopsy. Radiology 275:458–468CrossRefPubMedGoogle Scholar
  21. 21.
    Ahmed HU (2009) The index lesion and the origin of prostate cancer. N Engl J Med 361:1704–1706CrossRefPubMedGoogle Scholar
  22. 22.
    Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Haas M, Günzel K, Miller K et al (2017) Is the ellipsoid formula the new standard for 3-Tesla MRI prostate volume calculation without endorectal coil? Urol Int 98:49–53CrossRefPubMedGoogle Scholar
  24. 24.
    Mozer P, Rouprt M, Le Cossec C et al (2015) First round of targeted biopsies using magnetic resonance imaging/ultrasonography fusion compared with conventional transrectal ultrasonography-guided biopsies for the diagnosis of localised prostate cancer: MRI/TRUS-fusion targeted vs standard TRUS-guided biopsy. BJU Int 115:50–57CrossRefPubMedGoogle Scholar
  25. 25.
    Billia M, Siddiqui KM, Chan S et al (2016) Assessment of histopathological features of needle biopsy in recurrent prostate cancer following salvage high-intensity focused ultrasound. Can Urol Assoc J J Assoc Urol Can 10:416–422CrossRefGoogle Scholar
  26. 26.
    Valerio M, Donaldson I, Emberton M et al (2015) Detection of Clinically Significant Prostate Cancer Using Magnetic Resonance Imaging-Ultrasound Fusion Targeted Biopsy: A Systematic Review. Eur Urol 68:8–19CrossRefPubMedGoogle Scholar
  27. 27.
    Schoots IG, Roobol MJ, Nieboer D et al (2015) Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 68:438–450CrossRefPubMedGoogle Scholar
  28. 28.
    Donaldson IA, Alonzi R, Barratt D et al (2015) Focal therapy: patients, interventions, and outcomes--a report from a consensus meeting. Eur Urol 67:771–777CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gelet A, Chapelon JY, Bouvier R et al (1996) Treatment of prostate cancer with transrectal focused ultrasound: early clinical experience. Eur Urol 29:174–183PubMedGoogle Scholar
  30. 30.
    Alonzo F, Melodelima C, Bratan F et al (2016) Detection of locally radio-recurrent prostate cancer at multiparametric MRI: Can dynamic contrast-enhanced imaging be omitted? Diagn Interv Imaging 97:433–441CrossRefPubMedGoogle Scholar
  31. 31.
    Schalekamp S, van Ginneken B, Schaefer-Prokop CM, Karssemeijer N (2014) Influence of study design in receiver operating characteristics studies: sequential versus independent reading. J Med Imaging (Bellingham) 1:015501CrossRefGoogle Scholar
  32. 32.
    Rosset R, Bratan F, Crouzet S et al (2017) Can pre- and postoperative magnetic resonance imaging predict recurrence-free survival after whole-gland high-intensity focused ablation for prostate cancer? Eur Radiol 27:1768–1775CrossRefPubMedGoogle Scholar
  33. 33.
    Abd-Alazeez M, Ramachandran N, Dikaios N et al (2015) Multiparametric MRI for detection of radiorecurrent prostate cancer: added value of apparent diffusion coefficient maps and dynamic contrast-enhanced images. Prostate Cancer Prostatic Dis 18:128–136CrossRefPubMedGoogle Scholar
  34. 34.
    Hausmann D, Aksöz N, von Hardenberg J et al (2017) Prostate cancer detection among readers with different degree of experience using ultra-high b-value diffusion-weighted Imaging: Is a non-contrast protocol sufficient to detect significant cancer? Eur Radiol.  https://doi.org/10.1007/s00330-017-5004-8
  35. 35.
    Donati OF, Jung SI, Vargas HA et al (2013) Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology 268:440–450CrossRefPubMedGoogle Scholar
  36. 36.
    Kirkham AP, Emberton M, Hoh IM et al (2008) MR Imaging of Prostate after Treatment with High-Intensity Focused Ultrasound 1. Radiology 246:833–844CrossRefPubMedGoogle Scholar
  37. 37.
    Vargas HA, Wassberg C, Akin O, Hricak H (2012) MR imaging of treated prostate cancer. Radiology 262:26–42CrossRefPubMedGoogle Scholar
  38. 38.
    Rischmann P, Gelet A, Riche B et al (2017) Focal High Intensity Focused Ultrasound of Unilateral Localized Prostate Cancer: A Prospective Multicentric Hemiablation Study of 111 Patients. Eur Urol 71:267–273CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Raïssa Lotte
    • 1
  • Alexandre Lafourcade
    • 2
  • Pierre Mozer
    • 3
  • Pierre Conort
    • 3
  • Eric Barret
    • 4
  • Eva Comperat
    • 5
  • Malek Ezziane
    • 1
  • Paul-Hugo Jouve de Guibert
    • 1
  • Sebastian Tavolaro
    • 6
  • Lisa Belin
    • 2
  • Franck Boudghene
    • 6
  • Olivier Lucidarme
    • 1
  • Raphaële Renard-Penna
    • 1
    • 6
    • 7
  1. 1.Academic Department of RadiologyHopital Pitié-Salpétrière, AP-HP, Sorbonne UniversityParisFrance
  2. 2.Academic Department of StatisticHopital Pitié-Salpétrière, AP-HP, Sorbonne UniversityParisFrance
  3. 3.Academic Department of UrologyHopital Pitié-Salpétrière, AP-HP, Sorbonne UniversityParisFrance
  4. 4.Urology DepartmentMontsouris InstituteParisFrance
  5. 5.Academic Department of PathologyHopital Pitié-Salpétrière, AP-HP, Sorbonne UniversityParisFrance
  6. 6.Academic Department of RadiologyHopital Tenon, AP-HP, Sorbonne UniversityParisFrance
  7. 7.GRC5, ONCOTYPE-Uro, Institut Universitaire de CancérologieParisFrance

Personalised recommendations