European Radiology

, Volume 28, Issue 10, pp 4134–4145 | Cite as

Superolateral Hoffa’s fat pad (SHFP) oedema and patellar cartilage volume loss: quantitative analysis using longitudinal data from the Foundation for the National Institute of Health (FNIH) Osteoarthritis Biomarkers Consortium

  • Arya Haj-Mirzaian
  • Ali Guermazi
  • Nima Hafezi-Nejad
  • Christopher Sereni
  • Michael Hakky
  • David J. Hunter
  • Bashir Zikria
  • Frank W. Roemer
  • Shadpour DemehriEmail author



To determine the association of superolateral Hoffa’s fat pad (SHFP) oedema and patellofemoral joint structural damage in participants of Foundation for the National Institute of Health Osteoarthritis Biomarkers Consortium study.


Baseline and 24-month MRIs of 600 subjects were assessed. The presence of SHFP oedema (using 0–3 grading scale) and patellar morphology metrics were determined using baseline MRI. Quantitative patellar cartilage volume and semi-quantitative MRI osteoarthritis knee score (MOAKS) variables were extracted. The associations between SHFP oedema and patellar cartilage damage, bone marrow lesion (BML), osteophyte and morphology were evaluated in cross-sectional model. In longitudinal analysis, the associations between oedema and cartilage volume loss (defined using reliable change index) and MOAKS worsening were evaluated.


In cross-sectional evaluations, the presence of SHFP oedema was associated with simultaneous lateral patellar cartilage/BML defects and inferior-medial patellar osteophyte size. A significant positive correlation between the degree of patella alta and SHFP oedema was detected (r = 0.259, p < 0.001). The presence of oedema was associated with 24-month cartilage volume loss (odds ratio (OR) 2.11, 95% confidence interval 1.46–3.06) and medial patellar BML size (OR 1.92 (1.15–3.21)) and number (OR 2.50 (1.29–4.88)) worsening. The optimal cut-off value for the grade of baseline SHFP oedema regarding both presence and worsening of patellar structural damage was ≥ 1 (presence of any SHFP hyperintensity).


The presence of SHFP oedema could be considered as a predictor of future patellar cartilage loss and BML worsening, and an indicator of simultaneous cartilage, BML and osteophyte defects.

Key Points

• SHFP oedema was associated with simultaneous lateral patellar OA-related structural damage.

• SHFP oedema was associated with longitudinal patellar cartilage loss over 24 months.

• SHFP oedema could be considered as indicator and predictor of patellar OA.


Cartilage Knee Magnetic resonance imaging Osteoarthritis Patella 





Anterior cruciate ligament


Analysis of variance


Area under the curve


Body mass index


Bone marrow lesion


Confidence interval


Dual echo at steady state


Foundation for the National Institute of Health


Insall–Salvati ratio


Intermediate weighted


Joint space loss




Magnetic resonance imaging osteoarthritis knee score


Multicenter Osteoarthritis Study


Multiplanar reconstruction


Magnetic resonance imaging




Osteoarthritis Initiative


Odds ratio


Physical activity scale for elderly


Reliable change index


Receiver operating characteristic


Standard deviation


Standard error


Superolateral Hoffa’s fat pad


Trochlear groove depth


Turbo spin echo


Tibial tuberosity trochlear groove


Water excitation


Western Ontario & McMaster Universities osteoarthritis


Whole-organ magnetic resonance score



The authors would like to thank the study participants and the staff involved in FNIH projects.


The authors state that this work has not received any funding.

Compliance with ethical standards


The scientific guarantor of this publication is Dr. Ali Guermazi.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not required for this study because we used an open access OAI database. All enrolled subjects in the OAI study gave informed consent.

Ethical approval

Institutional review board approval was not required because we used an open access OAI database. The OAI study has received ethics board approval by the institutional review board at the University of California, San Francisco (OAI Coordinating Centre; Approval Number 10-00532).

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in the OAI database and OAI-related articles.


• prospective

• observational

• multicentre study

Supplementary material

330_2018_5334_MOESM1_ESM.docx (26 kb)
ESM 1 (DOCX 26 kb)


  1. 1.
    Chung CB, Skaf A, Roger B, Campos J, Stump X, Resnick D (2001) Patellar tendon-lateral femoral condyle friction syndrome: MR imaging in 42 patients. Skeletal Radiol 30:694–697CrossRefGoogle Scholar
  2. 2.
    Clockaerts S, Bastiaansen-Jenniskens Y, Runhaar J et al (2010) The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthritis Cartilage 18:876–882CrossRefGoogle Scholar
  3. 3.
    Saddik D, McNally E, Richardson M (2004) MRI of Hoffa’s fat pad. Skeletal Radiol 33:433–444CrossRefGoogle Scholar
  4. 4.
    De Vuyst D, Vanhoenacker F, Bernaerts A (2004) Patellar tendon-lateral femoral condyle friction syndrome. JBR BTR 87:130–131PubMedGoogle Scholar
  5. 5.
    Hoffa A (1904) The influence of the adipose tissue with regard to the pathology of the knee joint. JAMA 43:795–796CrossRefGoogle Scholar
  6. 6.
    Subhawong TK, Eng J, Carrino JA, Chhabra A (2010) Superolateral Hoffa's fat pad edema: association with patellofemoral maltracking and impingement. AJR Am J Roentgenol 195:1367–1373CrossRefGoogle Scholar
  7. 7.
    Campagna R, Pessis E, Biau DJ et al (2012) Is superolateral Hoffa fat pad edema a consequence of impingement between lateral femoral condyle and patellar ligament? Radiology 263:469–474CrossRefGoogle Scholar
  8. 8.
    Jibri Z, Martin D, Mansour R, Kamath S (2012) The association of infrapatellar fat pad oedema with patellar maltracking: a case–control study. Skeletal Radiol 41:925–931CrossRefGoogle Scholar
  9. 9.
    Bohnsack M, Klages P, Hurschler C et al (2009) Influence of an infrapatellar fat pad edema on patellofemoral biomechanics and knee kinematics: a possible relation to the anterior knee pain syndrome. Arch Orthop Trauma Surg 129:1025–1030CrossRefGoogle Scholar
  10. 10.
    Jarraya M, Guermazi A, Felson DT et al (2017) Is superolateral Hoffa’s fat pad hyperintensity a marker of local patellofemoral joint disease?-The MOST Study. Osteoarthritis Cartilage 25:1459–1467CrossRefGoogle Scholar
  11. 11.
    Peterfy C, Guermazi A, Zaim S et al (2004) Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12:177–190CrossRefGoogle Scholar
  12. 12.
    Widjajahakim R, Roux M, Jarraya M et al (2017) Relationship of trochlear morphology and patellofemoral joint alignment to superolateral Hoffa fat pad edema on MR IMAGES IN INDIVIDUALS WITH OR AT RISK FOR OSTEOARTHRITIS OF THE KNEE: The MOST Study. Radiology 284:806–814CrossRefGoogle Scholar
  13. 13.
    Matcuk GR Jr, Cen SY, Keyfes V, Patel DB, Gottsegen CJ, White EA (2014) Superolateral Hoffa fat-pad edema and patellofemoral maltracking: predictive modeling. AJR Am J Roentgenol 203:W207–W212CrossRefGoogle Scholar
  14. 14.
    Hunter DJ, Guermazi A, Lo GH et al (2011) Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19:990–1002CrossRefGoogle Scholar
  15. 15.
    Dam EB, Lillholm M, Marques J, Nielsen M (2015) Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative. Med Imaging (Bellingham) 2:024001–024001CrossRefGoogle Scholar
  16. 16.
    Hafezi-Nejad N, Guermazi A, Roemer FW et al (2017) Prediction of medial tibiofemoral compartment joint space loss progression using volumetric cartilage measurements: data from the FNIH OA biomarkers consortium. Eur Radiol 27:464–473CrossRefGoogle Scholar
  17. 17.
    Eckstein F, Collins J, Nevitt M et al (2015) Brief report: cartilage thickness change as an imaging biomarker of knee osteoarthritis progression: data from the foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol 67:3184–3189CrossRefGoogle Scholar
  18. 18.
    Folkesson J, Dam EB, Olsen OF, Pettersen PC, Christiansen C (2007) Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans Med Imaging 26:106–115CrossRefGoogle Scholar
  19. 19.
    Guermazi A, Roemer FW, Haugen IK, Crema MD, Hayashi D (2013) MRI-based semiquantitative scoring of joint pathology in osteoarthritis. Nat Rev Rheumatol 9:236–251CrossRefGoogle Scholar
  20. 20.
    Roth C, Jacobson J, Jamadar D, Caoili E, Morag Y, Housner J (2004) Quadriceps fat pad signal intensity and enlargement on MRI: prevalence and associated findings. AJR Am J Roentgenol 182:1383–1387CrossRefGoogle Scholar
  21. 21.
    Escala JS, Mellado JM, Olona M, Giné J, Saurí A, Neyret P (2006) Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features. Knee Surg Sports Traumatol Arthrosc 14:264–272CrossRefGoogle Scholar
  22. 22.
    Ward SR, Terk MR, Powers CM (2007) Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. JBJS 89:1749–1755Google Scholar
  23. 23.
    Pfirrmann CW, Zanetti M, Romero J, Hodler J (2000) Femoral trochlear dysplasia: MR findings. Radiology 216:858–864CrossRefGoogle Scholar
  24. 24.
    Wittstein JR, Bartlett EC, Easterbrook J, Byrd JC (2006) Magnetic resonance imaging evaluation of patellofemoral malalignment. Arthroscopy 22:643–649CrossRefGoogle Scholar
  25. 25.
    Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J (2006) The tibial tuberosity–trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13:26–31CrossRefGoogle Scholar
  26. 26.
    Cicuttini F, Spector T, Baker J (1997) Risk factors for osteoarthritis in the tibiofemoral and patellofemoral joints of the knee. J Rheumatol 24:1164–1167PubMedGoogle Scholar
  27. 27.
    Tangtrakulwanich B, Suwanno P (2012) Epidemiology and risk factors of patellofemoral osteoarthritis in adults: a population-based study in southern Thailand. J Med Assoc Thai 95:1048PubMedGoogle Scholar
  28. 28.
    Heaton RK, Temkin N, Dikmen S et al (2001) Detecting change: a comparison of three neuropsychological methods, using normal and clinical samples. Arch Clin Neuropsychol 16:75–91CrossRefGoogle Scholar
  29. 29.
    Jacobson NS, Truax P (1991) Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol 59:12CrossRefGoogle Scholar
  30. 30.
    Wise EA (2004) Methods for analyzing psychotherapy outcomes: a review of clinical significance, reliable change, and recommendations for future directions. J Pers Assess 82:50–59CrossRefGoogle Scholar
  31. 31.
    Iverson GL (2011) Reliable change index. In: Kreutzer J, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology. Springer, New York, pp 2150–2153CrossRefGoogle Scholar
  32. 32.
    Hunter D, Zhang W, Conaghan P et al (2011) Responsiveness and reliability of MRI in knee osteoarthritis: a meta-analysis of published evidence. Osteoarthritis Cartilage 19:589–605CrossRefGoogle Scholar
  33. 33.
    Dam EB (2015) Validation of the KneeIQ segmentation framework on SKI10. Accessed 23 March 2015
  34. 34.
    Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston–Leeds Osteoarthritis Knee Score). Ann Rheum Dis 67:206–211CrossRefGoogle Scholar
  35. 35.
    Kornaat PR, Ceulemans RY, Kroon HM et al (2005) MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intraobserver reproducibility of a compartment-based scoring system. Skeletal Radiol 34:95–102CrossRefGoogle Scholar
  36. 36.
    Luyckx T, Didden K, Vandenneucker H, Labey L, Innocenti B, Bellemans J (2009) Is there a biomechanical explanation for anterior knee pain in patients with patella alta? J Bone Joint Surg Br 91:344–350CrossRefGoogle Scholar
  37. 37.
    Elahi S, Felson DT, Engelman L, Sharma L (2000) The association between varus–valgus alignment and patellofemoral osteoarthritis. Arthritis Rheum 43:1874–1880CrossRefGoogle Scholar
  38. 38.
    Englund M, Lohmander L (2005) Patellofemoral osteoarthritis coexistent with tibiofemoral osteoarthritis in a meniscectomy population. Ann Rheum Dis 64:1721–1726CrossRefGoogle Scholar
  39. 39.
    Dunlop D, Hayes K, Song J, Torres L, Sharma L (2004) Varus–valgus alignment in the progression of patellofemoral osteoarthritis. Arthritis Rheum 50:2184–2190CrossRefGoogle Scholar
  40. 40.
    Slemenda C, Brandt KD, Heilman DK et al (1997) Quadriceps weakness and osteoarthritis of the knee. Ann Intern Med 127:97–104CrossRefGoogle Scholar
  41. 41.
    Neuman P, Kostogiannis I, Fridén T, Roos H, Dahlberg L, Englund M (2009) Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury–a prospective cohort study. Osteoarthritis Cartilage 17:284–290CrossRefGoogle Scholar
  42. 42.
    Thomas MJ, Wood L, Selfe J, Peat G (2010) Anterior knee pain in younger adults as a precursor to subsequent patellofemoral osteoarthritis: a systematic review. BMC Musculoskelet Disord 11:201CrossRefGoogle Scholar
  43. 43.
    Rytter S, Egund N, Jensen LK, Bonde JP (2009) Occupational kneeling and radiographic tibiofemoral and patellofemoral osteoarthritis. J Occup Med Toxicol 4:19CrossRefGoogle Scholar
  44. 44.
    Stefanik JJ, Guermazi A, Zhu Y et al (2011) Quadriceps weakness, patella alta, and structural features of patellofemoral osteoarthritis. Arthritis Care Res (Hoboken) 63:1391–1397CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Arya Haj-Mirzaian
    • 1
  • Ali Guermazi
    • 2
  • Nima Hafezi-Nejad
    • 3
  • Christopher Sereni
    • 4
  • Michael Hakky
    • 5
  • David J. Hunter
    • 6
  • Bashir Zikria
    • 7
  • Frank W. Roemer
    • 2
    • 8
  • Shadpour Demehri
    • 1
    Email author
  1. 1.Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of RadiologyBoston University School of MedicineBostonUSA
  3. 3.School of MedicineUniversity System of Maryland (USM)BaltimoreUSA
  4. 4.Department of RadiologyUniversity of Massachusetts Medical SchoolBostonUSA
  5. 5.Department of RadiologyFlorida HospitalMaitlandUSA
  6. 6.Rheumatology Department, Royal North Shore Hospital SydneyUniversity of SydneySydneyAustralia
  7. 7.Department of Orthopaedic SurgeryJohns Hopkins UniversityBaltimoreUSA
  8. 8.Department of RadiologyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations