Advertisement

European Radiology

, Volume 28, Issue 5, pp 1969–1976 | Cite as

Preoperative multiparametric MRI of the prostate for the prediction of lymph node metastases in prostate cancer patients treated with extended pelvic lymph node dissection

  • Giorgio Brembilla
  • Paolo Dell’Oglio
  • Armando Stabile
  • Alessandro Ambrosi
  • Giulia Cristel
  • Lisa Brunetti
  • Anna Damascelli
  • Massimo Freschi
  • Antonio Esposito
  • Alberto Briganti
  • Francesco Montorsi
  • Alessandro Del Maschio
  • Francesco De Cobelli
Urogenital

Abstract

Objectives

To assess the role of preoperative multiparametric MRI (mpMRI) of the prostate in the prediction of nodal metastases in patients treated with radical prostatectomy (RP) and extended pelvic lymph node dissection (ePLND).

Methods

We retrospectively analyzed 101 patients who underwent both preoperative mpMRI of the prostate and RP with ePLND at our institution. For each patient, complete preoperative clinical data and tumour characteristics at mpMRI were recorded. Final histopathologic stage was considered the standard of reference. Univariate and multivariate logistic regression analyses were performed.

Results

Nodal metastases were found in 23/101 (22.8%) patients. At univariate analyses, all clinical and radiological parameters were significantly associated to nodal invasion (all p<0.03); tumour volume at MRI (mrV), tumour ADC and tumour T-stage at MRI (mrT) were the most accurate predictors (AUC = 0.93, 0.86 and 0.84, respectively). A multivariate model including PSA levels, primary Gleason grade, mrT and mrV showed high predictive accuracy (AUC = 0.956). Observed prevalence of nodal metastases was very low among tumours with mrT2 stage and mrV<1cc (1.8%).

Conclusion

Preoperative mpMRI of the prostate can predict nodal metastases in prostate cancer patients, potentially allowing a better selection of candidates to ePLND.

Key points

• Multiparametric-MRI of the prostate can predict nodal metastases in prostate cancer

Tumour volume and stage at MRI are the most accurate predictors

Prevalence of nodal metastases is low for T2-stage and <1cc tumours

Preoperative mpMRI may allow a better selection of candidates to lymphadenectomy

Keywords

Magnetic resonance imaging Prostate cancer Tumour volume Lymph nodes Lymph node dissection 

Abbreviations

PCa

Prostate Cancer

mpMRI

Multi-parametric MRI

RP

Radical Prostatectomy

ePLND

Extended Pelvic Lymph Node Dissection

LN

Lymph Node

N-staging

Lymph Node Staging

mrT-stage

T-stage at MRI

mrV

Tumour Volume at MRI

Notes

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Francesco De Cobelli, M.D.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

Alessandro Ambrosi Ph.D. kindly provided statistical advice for this manuscript, and is one of the authors.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• observational

• performed at one institution

References

  1. 1.
    Schumacher MC, Burkhard FC, Thalmann GN et al (2008) Good Outcome for Patients with Few Lymph Node Metastases After Radical Retropubic Prostatectomy. Eur Urol 54:344–352.  https://doi.org/10.1016/j.eururo.2008.05.023 CrossRefPubMedGoogle Scholar
  2. 2.
    Mottet N, Bellmunt J, Bolla M et al (2017) EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 71:618–629.  https://doi.org/10.1016/j.eururo.2016.08.003 CrossRefPubMedGoogle Scholar
  3. 3.
    Hövels AM, Heesakkers RAM, Adang EM et al (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63:387–395.  https://doi.org/10.1016/j.crad.2007.05.022 CrossRefPubMedGoogle Scholar
  4. 4.
    Briganti A, Abdollah F, Nini A et al (2012) Performance characteristics of computed tomography in detecting lymph node metastases in contemporary patients with prostate cancer treated with extended pelvic lymph node dissection. Eur Urol 61:1132–1138.  https://doi.org/10.1016/j.eururo.2011.11.008 CrossRefPubMedGoogle Scholar
  5. 5.
    Thoeny HC, Froehlich JM, Triantafyllou M et al (2014) Metastases in Normal-sized Pelvic Lymph Nodes: Detection with Diffusion-weighted MR Imaging. Radiology 273:125–135.  https://doi.org/10.1148/radiol.14132921 CrossRefPubMedGoogle Scholar
  6. 6.
    Van den Bergh L, Lerut E, Haustermans K et al (2015) Final analysis of a prospective trial on functional imaging for nodal staging in patients with prostate cancer at high risk for lymph node involvement. Urol Oncol 33:109.e23-109.e31.  https://doi.org/10.1016/j.urolonc.2014.11.008
  7. 7.
    Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer. N Engl J Med 348:2491–2499.  https://doi.org/10.1056/NEJMoa022749 CrossRefPubMedGoogle Scholar
  8. 8.
    Evangelista L, Guttilla A, Zattoni F et al (2013) Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: A systematic literature review and meta-analysis. Eur Urol 63:1040–1048.  https://doi.org/10.1016/j.eururo.2012.09.039 CrossRefPubMedGoogle Scholar
  9. 9.
    Budaus L, Leyh-Bannurah SR, Salomon G et al (2016) Initial Experience of (68)Ga-PSMA PET/CT Imaging in High-risk Prostate Cancer Patients Prior to Radical Prostatectomy. Eur Urol 69:393–396.  https://doi.org/10.1016/j.eururo.2015.06.010 CrossRefPubMedGoogle Scholar
  10. 10.
    NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines).Google Scholar
  11. 11.
    Ploussard G, Briganti A, de la Taille A et al (2014) Pelvic lymph node dissection during robot-assisted radical prostatectomy: efficacy, limitations, and complications-a systematic review of the literature. Eur Urol 65:7–16.  https://doi.org/10.1016/j.eururo.2013.03.057 CrossRefPubMedGoogle Scholar
  12. 12.
    Roach M, Marquez C, Yuo HS et al (1994) Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 28:33–37.  https://doi.org/10.1016/0360-3016(94)90138-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Briganti A, Larcher A, Abdollah F et al (2012) Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: The essential importance of percentage of positive cores. Eur Urol 61:480–487.  https://doi.org/10.1016/j.eururo.2011.10.044 CrossRefPubMedGoogle Scholar
  14. 14.
    Memorial Sloan Kettering Cancer Center Dynamic Prostate Cancer Nomogram: Coefficients. https://www.mskcc.org/nomograms/prostate/pre-op/coefficients.
  15. 15.
    Gandaglia G, Fossati N, Zaffuto E et al (2017) Development and Internal Validation of a Novel Model to Identify the Candidates for Extended Pelvic Lymph Node Dissection in Prostate Cancer. Eur Urol Article in press.  https://doi.org/10.1016/j.eururo.2017.03.049
  16. 16.
    Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757.  https://doi.org/10.1007/s00330-011-2377-y CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Weinreb JC, Barentsz JO, Choyke PL et al (2016) PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol 69:16–40.  https://doi.org/10.1016/j.eururo.2015.08.052 CrossRefPubMedGoogle Scholar
  18. 18.
    Jager GJ, Barentsz JO, Oosterhof GO et al (1996) Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional T1-weighted magnetization-prepared-rapid gradient- echo sequence. Am J Roentgenol 167:1503–1507CrossRefGoogle Scholar
  19. 19.
    Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed). Ecol Modell.  https://doi.org/10.1016/j.ecolmodel.2003.11.004
  20. 20.
    Burnham KP, Anderson DR (2004) Multimodel Inference\rUnderstanding AIC and BIC in Model Selection. Sociol Methods Res 33:261–304CrossRefGoogle Scholar
  21. 21.
    Wang L, Mullerad M, Chen H-N et al (2004) Prostate cancer: incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology 232:133–139.  https://doi.org/10.1148/radiol.2321031086 CrossRefPubMedGoogle Scholar
  22. 22.
    Abdollah F, Suardi N, Gallina A et al (2013) Extended pelvic lymph node dissection in prostate cancer: A 20-year audit in a single center. Ann Oncol 24:1459–1466.  https://doi.org/10.1093/annonc/mdt120 CrossRefPubMedGoogle Scholar
  23. 23.
    Stamey TA, Freiha FS, McNeal JE et al (1993) Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 71:933–938.  https://doi.org/10.1002/1097-0142(19930201)71:3+<933::AID-CNCR2820711408>3.0.CO;2-L PubMedGoogle Scholar
  24. 24.
    McNeal JE, Villers AA, Redwine EA et al (1990) Histologic differentiation, cancer volume, and pelvic lymph node metastasis in adenocarcinoma of the prostate. Cancer 66:1225–1233.  https://doi.org/10.1002/1097-0142(19900915)66:6<1225::AID-CNCR2820660624>3.0.CO;2-X CrossRefPubMedGoogle Scholar
  25. 25.
    Knoedler JJ, Karnes RJ, Thompson RH et al (2014) The association of tumor volume with mortality following radical prostatectomy. Prostate Cancer Prostatic Dis 17:144–148.  https://doi.org/10.1038/pcan.2013.61 CrossRefPubMedGoogle Scholar
  26. 26.
    Noguchi M, Stamey TA, McNeal JE, Yemoto CM (2001) Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumor significance for men with nonpalpable prostate cancer. J Urol 166:104–110CrossRefPubMedGoogle Scholar
  27. 27.
    Humphrey PA, Jackbaty BA, Keetch D (1995) Relationship between Serum Prostate Specific Antigen, Needle Biopsy Findings, and Histopathologic Features of Prostatic Carcinoma in Radical Prostatectomy Tissues. Cancer 75:1842–1849CrossRefGoogle Scholar
  28. 28.
    Coakley FV, Kurhanewicz J, Lu Y et al (2002) Prostate Cancer Tumor Volume: Measurement with Endorectal MR and MR Spectroscopic Imaging. Radiology 223:91–97.  https://doi.org/10.1148/radiol.2231010575 CrossRefPubMedGoogle Scholar
  29. 29.
    Turkbey B, Mani H, Aras O et al (2012) Correlation of Magnetic Resonance Imaging Tumor Volume with Histopathology. J Urol 188:1157–1163.  https://doi.org/10.1016/j.juro.2012.06.011 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Harvey H, Orton MR, Morgan VA et al (2017) Volumetry of the dominant intraprostatic tumour lesion: Intersequence and interobserver differences on multiparametric MRI. Br J Radiol 90:20160416.  https://doi.org/10.1259/bjr.20160416 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Wang L, Hricak H, Kattan MW et al (2006) Combined endorectal and phased-array MRI in the prediction of pelvic lymph node metastasis in prostate cancer. Am J Roentgenol 186:743–748.  https://doi.org/10.2214/AJR.04.1682 CrossRefGoogle Scholar
  32. 32.
    Park SY, Oh YT, Jung DC et al (2015) Prediction of Micrometastasis (< 1 cm) to Pelvic Lymph Nodes in Prostate Cancer: Role of Preoperative MRI. Am J Roentgenol 205:W328–W334.  https://doi.org/10.2214/AJR.14.14138 CrossRefGoogle Scholar
  33. 33.
    Park SY, Shin S-J, Jung DC et al (2017) PI-RADS version 2: Preoperative role in the detection of normal-sized pelvic lymph node metastasis in prostate cancer. Eur J Radiol 91:22–28.  https://doi.org/10.1016/j.ejrad.2017.03.009 CrossRefPubMedGoogle Scholar
  34. 34.
    Abdollah F, Sun M, Thuret R et al (2010) Decreasing rate and extent of lymph node staging in patients undergoing radical prostatectomy may undermine the rate of diagnosis of lymph node metastases in prostate cancer. Eur Urol 58:882–892.  https://doi.org/10.1016/j.eururo.2010.09.029 CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  • Giorgio Brembilla
    • 1
    • 2
  • Paolo Dell’Oglio
    • 2
    • 3
  • Armando Stabile
    • 2
    • 3
  • Alessandro Ambrosi
    • 4
  • Giulia Cristel
    • 1
    • 2
  • Lisa Brunetti
    • 1
    • 2
  • Anna Damascelli
    • 1
    • 2
  • Massimo Freschi
    • 5
  • Antonio Esposito
    • 1
    • 2
  • Alberto Briganti
    • 2
    • 3
  • Francesco Montorsi
    • 2
    • 3
  • Alessandro Del Maschio
    • 1
    • 2
  • Francesco De Cobelli
    • 1
    • 2
  1. 1.Department of Radiology, Experimental Imaging CentreIRCCS Ospedale San RaffaeleMilanoItaly
  2. 2.Università Vita-Salute San RaffaeleMilanoItaly
  3. 3.Department of UrologyIRCCS Ospedale San RaffaeleMilanoItaly
  4. 4.Department of StatisticsVita-Salute San Raffaele UniversityMilanItaly
  5. 5.Department of PathologyIRCCS Ospedale San RaffaeleMilanoItaly

Personalised recommendations