Skip to main content

Advertisement

Log in

Diagnosis of breast cancer based on microcalcifications using grating-based phase contrast CT

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

A Breast to this article was published on 30 May 2018

Abstract

Objectives

Microcalcifications are an important feature in the diagnosis of breast cancer, especially in the early stages. In this paper, a CT-based method is proposed to potentially distinguish benign and malignant breast diseases based on the distributions of microcalcifications using grating-based phase-contrast imaging on a conventional X-ray tube.

Methods

The method presented based on the ratio of dark-field signals to attenuation signals in CT images is compared with the existing method based on the ratio in projections, and the threshold for the classification of microcalcifications in the two types of breast diseases is obtained using our approach. The experiment was operated on paraffin-fixed specimens that originated from 20 female patients ranging from 27–65 years old.

Results

Compared with the method based on projection images (AUC = 0.87), the proposed method is more effective (AUC = 0.95) to distinguish the two types of diseases. The discrimination threshold of microcalcifications for the classification of diseases in CT images is found to be 3.78 based on the Youden index.

Conclusions

The proposed method can be further developed to improve the early diagnosis and diagnostic accuracy and reduce the clinical misdiagnosis rate of breast cancer.

Key Points

Microcalcifications are of special importance to indicate early breast cancer.

Grating-based phase-contrast imaging can improve the diagnosis of breast cancers.

The method described here can better classify benign and malignant breast diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO | Cancer, WHO 2016

  2. Fasching PA, Ekici AB, Adamietz BR, et al (2011) Breast Cancer Risk - Genes, Environment and Clinics. Geburtshilfe Frauenheilkd 71:1056–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hilleren DJ, Andersson IT, Lindholm K, Linnell FS (1991) Invasive lobular carcinoma: mammographic findings in a 10-year experience. Radiology 178:149–154

    Article  PubMed  CAS  Google Scholar 

  4. Brenner RJ, Pfaff JM (1996) Mammographic features after conservation therapy for malignant breast disease: Serial findings standardized by regression analysis. Am J Roentgenol 167:171–178

    Article  CAS  Google Scholar 

  5. Sickles EA (2000) Breast Imaging: From 1965 to the Present1. Radiology 215:1–16

    Article  PubMed  CAS  Google Scholar 

  6. Anton G, Bayer F, Beckmann MW, et al (2013) Grating-based darkfield imaging of human breast tissue. Z Med Phys 23:228–235

    Article  PubMed  Google Scholar 

  7. Radi MJ (1989) Calcium oxalate crystals in breast biopsies. An overlooked form of microcalcification associated with benign breast disease. Arch Pathol Lab Med 113:1367–1369

    PubMed  CAS  Google Scholar 

  8. Johnson JM (1999) Histological Correlation of Microcalcifications in Breast Biopsy Specimens. Arch Surg 134:712

    Article  PubMed  CAS  Google Scholar 

  9. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS (2002) Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using raman spectroscopy. Cancer Res. 62:5375–5380

    PubMed  CAS  Google Scholar 

  10. Dahlstrom JE, Jain S (2001) Histological correlation of mammographically detected microcalcifications in stereotactic core biopsies. Pathology 33:444–448

    Article  PubMed  CAS  Google Scholar 

  11. Ellis IO, Humphreys S, Michell M, Pinder SE, Wells CA, Zakhour HD (2004) Best Practice No 179. Guidelines for breast needle core biopsy handling and reporting in breast screening assessment. J Clin Pathol 57:897–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cai W, Ning R (2009) Dose efficiency consideration for volume-of-interest breast imaging using x-ray differential phase-contrast CT. Proc SPIE 7258:72584D–72584D–9

    Article  Google Scholar 

  13. Stampanoni M, Wang Z, Thüring T, et al (2011) The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Invest Radiol 46:801–806

    Article  PubMed  CAS  Google Scholar 

  14. Hauser N, Wang Z, Kubik-Huch RA, et al (2014) A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography. Invest Radiol 49:131–137

    Article  PubMed  Google Scholar 

  15. Sztrókay A, Herzen J, Auweter SD, et al (2013) Assessment of grating-based X-ray phase-contrast CT for differentiation of invasive ductal carcinoma and ductal carcinoma in situ in an experimental ex vivo set-up. Eur Radiol 23:381–387

    Article  PubMed  Google Scholar 

  16. Willner M, Herzen J, Grandl S, et al (2014) Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging. Phys Med Biol 59:1557–1571

    Article  PubMed  CAS  Google Scholar 

  17. Michette A, Buckley C (1993) X-ray science and technology

  18. Keyrilainen J, Bravin A, Fernandez M, Tenhunen M, Virkkunen P, Suortti P (2010) Phase-contrast X-ray imaging of breast. Acta Radiol 51:866–884

    Article  PubMed  Google Scholar 

  19. Bonse U, Hart M (1965) An X-ray interferometer. Appl Phys Lett 6:155–156

    Article  Google Scholar 

  20. Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72:156

    Article  Google Scholar 

  21. Momose A, Fukuda J (1995) Phase-contrast radiographs of nonstained rat cerebellar specimen. Med Phys 22:375–379

    Article  PubMed  CAS  Google Scholar 

  22. Davis TJ, Gao D, Gureyev TE, Stevenson AW, Wilkins SW (1995) Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598

    Article  CAS  Google Scholar 

  23. Chapman D, Thomlinson W, Johnston RE, et al (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42:2015–2025

    Article  PubMed  CAS  Google Scholar 

  24. Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486–5492

    Article  CAS  Google Scholar 

  25. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384:335–338

    Article  CAS  Google Scholar 

  26. Chen R, Liu P, Xiao T, Xu LX (2014) X-ray imaging for non-destructive microstructure analysis at SSRF. Adv Mater 26:7688–7691

    Article  PubMed  CAS  Google Scholar 

  27. David C, Nöhammer B, Solak HH, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 81:3287–3289

    Article  CAS  Google Scholar 

  28. Momose A (2003) Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt Express 11:2303–2314

    Article  PubMed  Google Scholar 

  29. Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261

    Article  CAS  Google Scholar 

  30. David C, Weitkamp T, Pfeiffer F, et al (2007) Hard X-ray phase imaging and tomography using a grating interferometer. Spectrochim Acta B At Spectrosc 62:626–630

    Article  CAS  Google Scholar 

  31. Pfeiffer F (2012) Milestones and basic principles of grating-based x-ray and neutron phase-contrast imaging. AIP Conf Proc 1466:2–11

    Article  Google Scholar 

  32. Coan P, Bravin A, Tromba G (2013) Phase-contrast x-ray imaging of the breast: recent developments towards clinics. J Phys D Appl Phys 46:494007

    Article  CAS  Google Scholar 

  33. Roessl E, Daerr H, Koehler T, Martens G, van Stevendaal U (2014) Clinical boundary conditions for grating-based differential phase-contrast mammography. Philos Trans R Soc A Math Phys Eng Sci 372:1–7

    Article  CAS  Google Scholar 

  34. Fredenberg E, Danielsson M, Stayman JW, Siewerdsen JH, Aslund M, Åslund M (2012) Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach. Med Phys 39:5317–5335

    Article  PubMed  PubMed Central  Google Scholar 

  35. Olivo A, Gkoumas S, Endrizzi M, et al (2013) Low-dose phase contrast mammography with conventional x-ray sources. Med Phys 40:90701

    Article  CAS  Google Scholar 

  36. Morita T, Yamada M, Kano A, Nagatsuka S, Honda C, Endo T (2008) A comparison between film-screen mammography and full-field digital mammography utilizing phase contrast technology in breast cancer screening programs. Digital Mammography 2008:48–54

  37. Tanaka T, Honda C, Matsuo S, et al (2005) The first trial of phase contrast imaging for digital full-field mammography using a practical molybdenum x-ray tube. Invest Radiol 40:385–396

    Article  PubMed  Google Scholar 

  38. Michel T, Rieger J, Anton G, et al (2013) On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography. Phys Med Biol 58:2713–2732

    Article  PubMed  Google Scholar 

  39. Wang Z, Hauser N, Singer G, et al (2014) Non-invasive classification of microcalcifications with phase-contrast X-ray mammography. Nat Commun 5:3797

    Article  PubMed  CAS  Google Scholar 

  40. Scherer KH (2016) Grating-Based X-Ray Phase-Contrast Mammography. Technical University of Munich, Germany

    Book  Google Scholar 

  41. Wang ZT, Kang KJ, Huang ZF, Chen ZQ (2009) Quantitative grating-based x-ray dark-field computed tomography. Appl Phys Lett 95:94105

    Article  CAS  Google Scholar 

  42. Maier A, Hofmann HG, Berger M, et al (2013) CONRAD--a software framework for cone-beam imaging in radiology. Med Phys 40:111914

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  44. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol Illinois 143:29–36

    Article  CAS  Google Scholar 

  45. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 39:561–577

    PubMed  CAS  Google Scholar 

  46. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35

    Article  PubMed  CAS  Google Scholar 

  47. Schisterman EF, Perkins NJ, Liu A, Bondell H (2005) Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology 16:73–81

    Article  PubMed  Google Scholar 

  48. Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF (2008) Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biometrical J. 50:419–430

    Article  Google Scholar 

  49. Scherer K, Willer K, Gromann L, et al (2015) Toward Clinically Compatible Phase-Contrast Mammography. PLoS One 10:e0130776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Grandl S, Scherer K, Sztrokay-Gaul A, et al (2015) Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study. Eur Radiol 25:3659–3668

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scherer K, Birnbacher L, Chabior M, et al (2014) Bi-directional x-ray phase-contrast mammography. PLoS One 9:e93502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Liu J, Cai W, Ning R (2016) Evaluation of differential phase contrast cone beam CT imaging system. J Xray Sci Technol 25:357–372

  53. Ge Y, Li K, Garrett J, Chen GH (2014) Grating based x-ray differential phase contrast imaging without mechanical phase stepping. Opt Express 22:14246–14252

    Article  PubMed  Google Scholar 

  54. Kagias M, Wang Z, Villanueva-Perez P, Jefimovs K, Stampanoni M (2016) 2D-Omnidirectional Hard-X-Ray Scattering Sensitivity in a Single Shot. Phys Rev Lett 116:93902

    Article  CAS  Google Scholar 

  55. Momose A, Yashiro W, Harasse S, Kuwabara H (2011) Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm. Opt Express 19:8423–8432

    Article  PubMed  CAS  Google Scholar 

  56. Wang Z, Huang Z, Zhang L, et al (2011) Low dose reconstruction algorithm for differential phase contrast imaging. J Xray Sci Technol 19:403–415

    PubMed  Google Scholar 

  57. Stutman D, Finkenthal M (2012) Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy. Appl. Phys. Lett. 101:1–6

    Article  CAS  Google Scholar 

  58. Zanette I, Bech M, Rack A, et al (2012) Trimodal low-dose X-ray tomography. Proc Natl Acad Sci U S A 109:10199–10204

    Article  PubMed  PubMed Central  Google Scholar 

  59. Miao H, Chen L, Bennett EE, et al (2013) Motionless phase stepping in X-ray phase contrast imaging with a compact source. Proc Natl Acad Sci 110:19268–19272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Bevins N, Zambelli J, Li K, Qi Z, Chen G-H (2012) Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping. Med Phys 39:424

    Article  PubMed  Google Scholar 

  61. Marschner M, Willner M, Potdevin G, et al (2016) Helical X-ray phase-contrast computed tomography without phase stepping. Sci Rep 6:23953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Xie H, Cai W, Yang L, Mao H, Tang X (2016) Reducing radiation dose in grating based x-ray phase contrast CT with twin-peaks in its phase stepping curves. Med Phys 43:5942–5950

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study has received funding by the National Natural Science Foundation of China (No. 11235007) and a Tsinghua University Independent Research Project Grant, “Research on Key Technologies and CT Reconstruction methods of multi-energy X-ray imaging”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Chen.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Zhiqiang Chen.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors, Shengping Wang, has significant statistical expertise.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Methodology

• prospective

• experimental

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gao, H., Chen, Z. et al. Diagnosis of breast cancer based on microcalcifications using grating-based phase contrast CT. Eur Radiol 28, 3742–3750 (2018). https://doi.org/10.1007/s00330-017-5158-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5158-4

Keywords

Navigation