Skip to main content

Advertisement

Log in

Thermal ablation of thyroid nodules: are radiofrequency ablation, microwave ablation and high intensity focused ultrasound equally safe and effective methods?

  • Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

This study compares volume reduction of benign thyroid nodules three months after Radiofrequency Ablation (RFA), Microwave Ablation (MWA) or High Intensity Focused Ultrasound (HIFU) to evaluate which of these methods is the most effective and safe alternative to thyroidectomy or radioiodine therapy.

Material and Methods

Ninety-four patients (39 male, 55 female) with a total of 118 benign, symptomatic thyroid nodules were divided into three subgroups. HIFU was applied to 14 patients with small nodules. The other 80 patients were divided up into two groups of 40 patients each for RFA and MWA in the assumption that both methods are comparable effective. The pre-ablative and post-ablative volume was measured by ultrasound.

Results

RFA showed a significant volume reduction of nodules of 50 % (p<0.05), MWA of 44 % (p<0.05) and HIFU of 48 % (p<0.05) three months after ablation. None of the examined ablation techniques caused serious or permanent complications.

Conclusion

RFA, MWA and HIFU showed comparable results considering volume reduction. All methods are safe and effective treatments of benign thyroid nodules.

Key Points

Thermal Ablation can be used to treat benign thyroid nodules

Thermal Ablation can be an alternative to thyroidectomy or radioiodine therapy

Radiofrequency Ablation, Microwave Ablation, High Intensity Focused Ultrasound are safe and effective

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Happel C, Kranert WT, Bockisch B et al (2016) 131I and 99m Tc-Uptake in focal thyroid autonomies Development in Germany since the 1980s. Nukleramedzin 55:236–241

    Article  Google Scholar 

  2. Gärtner R (2016) Recent data on iodine intake in Germany and Europe. J Trace Elem Med Biol 37:85–90

    Article  PubMed  Google Scholar 

  3. Raval CB, Rahman SA (2015) Difficult airway challenges-intubation and extubation matters in a case of large goiter with retrosternal extension. Anesth Essays Res 9:247–250

    Article  PubMed  PubMed Central  Google Scholar 

  4. Majumder KR, Karmakar R, Karim S et al (2016) Malignancy in Solitary Thyroid Nodule. Mymensingh Med J MMJ 25:39–44

    CAS  PubMed  Google Scholar 

  5. Baumgarten J, Happel C, Ackermann H et al (2017) Evaluation of intra- and interobserver agreement of Technetium-99m-sestamibi imaging in cold thyroid nodules. Nuklearmedizin 56(4):132–138

  6. Sheehan MT, Doi SAR (2016) Transient Hypothyroidism after Radioiodine for Graves’ Disease: Challenges in Interpreting Thyroid Function Tests. Clin Med Res 14:40–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Müller F, Happel C, Reinhardt J et al (2014) Evaluation of fear of radiation and isolation before and after radioiodine therapy. Thyroid 24:1151–1155

    Article  Google Scholar 

  8. Kariyama K, Wakuta A, Nishimura M et al (2015) Percutaneous Radiofrequency Ablation for Intermediate-Stage Hepatocellular Carcinoma. Oncology 89:19–26

    Article  PubMed  Google Scholar 

  9. Miao Y, Ni Y, Yu J et al (2000) A comparative study on validation of a novel cooled-wet electrode for radiofrequency liver ablation. Investig Radiol 35:438–444

    Article  CAS  Google Scholar 

  10. Fischbach F, Lohfink K, Gaffke G et al (2013) Magnetic resonance-guided freehand radiofrequency ablation of malignant liver lesions: a new simplified and time-efficient approach using an interactive open magnetic resonance scan platform and hepatocyte-specific contrast agent. Investig Radiol 48:422–428

    Article  CAS  Google Scholar 

  11. Kim Y, Lim HK, Park MJ et al (2016) Screening Magnetic Resonance Imaging-Based Prediction Model for Assessing Immediate Therapeutic Response to Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids. Investig Radiol 51:15–24

    Article  Google Scholar 

  12. Barral M, Auperin A, Hakime A et al (2016) Percutaneous Thermal Ablation of Breast Cancer Metastases in Oligometastatic Patients. Cardiovasc Intervent Radiol 39:885–893

    Article  CAS  PubMed  Google Scholar 

  13. Pan T, Xie Q-K, Lv N et al (2016) Percutaneous CT-guided Radiofrequency Ablation for Lymph Node Oligometastases from Hepatocellular Carcinoma: A Propensity Score-matching Analysis. Radiology 282:259–270

    Article  PubMed  Google Scholar 

  14. Thamtorawat S, Rojwatcharapibarn S, Tongdee T et al (2016) The Outcome of Radiofrequency Ablation of Metastatic Liver Tumors. J Med Assoc Thail Chotmaihet Thangphaet 99:424–432

    Google Scholar 

  15. Chheang S, Abtin F, Guteirrez A et al (2013) Imaging Features following Thermal Ablation of Lung Malignancies. Semin Interv Radiol 30:157–168

    Article  Google Scholar 

  16. Dupuy DE, Shulman M (2010) Current status of thermal ablation treatments for lung malignancies. Semin Interv Radiol 27:268–275

    Article  Google Scholar 

  17. Marinova M, Strunk HM, Rauch M et al (2016) High-intensity focused ultrasound (HIFU) for tumor pain relief in inoperable pancreatic cancer. Evaluation with the pain sensation scale (SES). Schmerz 31:31–39

    Article  Google Scholar 

  18. Dupuy DE, Monchik JM, Decrea C et al (2001) Radiofrequency ablation of regional recurrence from well-differentiated thyroid malignancy. Surgery 130:971–977

    Article  CAS  PubMed  Google Scholar 

  19. Park KW, Shin JH, Han B-K et al (2011) Inoperable Symptomatic Recurrent Thyroid Cancers. Preliminary Result of Radiofrequency Ablation. Ann Surg Oncol 18:2564–2568

    Article  PubMed  Google Scholar 

  20. Korkusuz Y, Erbelding C, Kohlhase K et al (2015) Bipolar radiofrequency ablation of benign symptomatic thyroid nodules. Initial experience with bipolar radiofrequency. RöFo: Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin 188:671–675

    PubMed  Google Scholar 

  21. Kim Y-S, Rhim H, Tae K et al (2006) Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience. Thyroid 16(4):361–367

  22. Kohlhase KD, Korkusuz Y, Gröner D et al (2016) Bipolar radiofrequency ablation of benign thyroid nodules using a multiple overlapping shot technique in a 3-month follow-up. Int J Hyperth 32:511–516 1–6

    Article  Google Scholar 

  23. Aysan E, Idiz UO, Akbulut H et al (2016) Single-session radiofrequency ablation on benign thyroid nodules: a prospective single center study. Radiofrequency ablation on thyroid. Langenbeck’s Arch Surg Deut Ges Chir 401:357–363

    Article  Google Scholar 

  24. Lee KF, Wong J, Hui JW et al (2017) Long-term outcomes of microwave versus radiofrequency ablation for hepatocellular carcinoma by surgical approach. A retrospective comparative study. Asian J Surg 40(4):301–308

  25. Korkusuz H, Fehre N, Sennert M et al (2015) Volume reduction of benign thyroid nodules 3 months after a single treatment with high-intensity focused ultrasound (HIFU). J Ther Ultrasound 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wijlemans JW, Greef M, Schubert G et al (2015) A clinically feasible treatment protocol for magnetic resonance-guided high-intensity focused ultrasound ablation in the liver. Investig Radiol 50:24–31

    Article  Google Scholar 

  27. Korkusuz H, Sennert M, Fehre N, Happel C et al (2015) Localized Thyroid Tissue Ablation by High Intensity Focused Ultrasound: Volume Reduction, Effects on Thyroid Function and Immune Response. RöFo Fortschr Geb Röntgenstrahlen 187:1011–1015

    Article  CAS  Google Scholar 

  28. Happel C, Korkusuz H, Kranert WT et al (2014) Combination of ultrasound guided percutaneous microwave ablation and radioiodine therapy for treatment of hyper- and hypofunctioning thyroid nodules. Nuklearmedizin 53:N48–N49

    CAS  PubMed  Google Scholar 

  29. Mader A, Mader OM, Gröner D et al (2017) Minimally invasive local ablative therapies in combination with radioiodine therapy in benign thyroid disease: preparation, feasibility and efficiency - preliminary results. Int J Hyperth 5:1–10

    Article  Google Scholar 

  30. Happel C, Korkusuz H, Koch DA (2015) Combination of ultrasound guided percutaneous microwave ablation and radioiodine therapy in benign thyroid diseases A suitable method to reduce the 131I activity and hospitalization time? Nuklearmedizin 54:118–124

    Article  PubMed  Google Scholar 

  31. Korkusuz H, Happel C, Koch DA et al (2016) Combination of Ultrasound-Guided Percutaneous Microwave Ablation and Radioiodine Therapy in Benign Thyroid Disease: A 3-Month Follow-Up Study. RöFo Fortschr Geb Röntgenstrahlen 188:60–68

    CAS  Google Scholar 

  32. Huffman SD, Huffman NP, Lewandowski R et al (2011) Radiofrequency Ablation Complicated by Skin Burn. Semin Interv Radiol 28:179–182

    Article  CAS  Google Scholar 

  33. Ha EJ, Baek JH, Lee JH (2011) The efficacy and complications of radiofrequency ablation of thyroid nodules. Curr Opin Endocrinol Diabetes Obes 18:310–314

    Article  PubMed  Google Scholar 

  34. Feng B, Liang P, Cheng Z et al (2012) Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules. Experimental and clinical studies. Eur J Endocrinol 166:1031–1037

    Article  CAS  PubMed  Google Scholar 

  35. Heck K, Happel C, Grünwald F et al (2015) Percutaneous microwave ablation of thyroid nodules. Effects on thyroid function and antibodies. Int J Hyperth 31:560–567

    Article  CAS  Google Scholar 

  36. Cesareo R, Pasqualini V, Simeoni C et al (2015) Prospective Study of Effectiveness of Ultrasound-Guided Radiofrequency Ablation Versus Control Group in Patients Affected by Benign Thyroid Nodules. J Clin Endocrinol Metab 100:460–466

    Article  CAS  PubMed  Google Scholar 

  37. Spiezia S, Garberoglio R, Milone F et al (2009) Thyroid Nodules and Related Symptoms Are Stably Controlled Two Years After Radiofrequency Thermal Ablation. Thyroid 19:219–225

    Article  PubMed  Google Scholar 

  38. Baek JH, Kim YS, Lee D et al (2010) Benign Predominantly Solid Thyroid Nodules. Prospective Study of Efficacy of Sonographically Guided Radiofrequency Ablation Versus Control Condition. Am J Roentgenol 194:1137–1142

    Article  Google Scholar 

  39. van Ginhoven TM, Massolt ET, Bijdevaate DC et al (2016) Radiofrequency ablation of a symptomatic benign thyroid nodule. Ned Tijdschr Geneeskd 160:D202

    PubMed  Google Scholar 

  40. Kim C, Lee JH, Choi YJ et al (2017) Complications encountered in ultrasonography-guided radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers. Eur Radiol 27(8):3128–3137

    Article  PubMed  Google Scholar 

  41. Yu J, Liang P, Yu X et al (2011) A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe. Results in ex vivo and in vivo porcine livers. Eur J Radiol 79:124–130

    Article  PubMed  Google Scholar 

  42. Lee JM, Han JK, Kim HC et al (2007) Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study. Investig Radiol 42:163–171

    Article  Google Scholar 

  43. Yue W, Wang S, Wang B et al (2013) Ultrasound guided percutaneous microwave ablation of benign thyroid nodules. Safety and imaging follow-up in 222 patients. Eur J Radiol 82:e11–e16

    Article  PubMed  Google Scholar 

  44. Baek JH, Lee JH, Sung JY et al (2012) Complications Encountered in the Treatment of Benign Thyroid Nodules with US-guided Radiofrequency Ablation. A Multicenter Study. Radiology 262:335–342

    Article  PubMed  Google Scholar 

  45. Orosco RK, Lin HW, Bhattacharyya N (2015) Ambulatory Thyroidectomy. A Multistate Study of Revisits and Complications. Otolaryngol Head Neck Surg 152:1017–1023

    Article  PubMed  Google Scholar 

  46. Mauri G, Cova L, Monaco CG, et al (2016) Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA). Int J Hyperthermia 33(3):295–299

  47. Wang J-F, Wu T, Hu K-P et al (2017) Complications Following Radiofrequency Ablation of Benign Thyroid Nodules: A Systematic Review. Chin Med J 130:1361–1370

    Article  PubMed  PubMed Central  Google Scholar 

  48. Korkusuz Y, Mader A, Gröner D et al (2017) Comparison of mono- and bipolar radiofrequency ablation in benign thyroid disease. World J Surg. http://dx.doi.org/10.1007/s00268-017-4039-y

  49. Morelli F, Sacrini A, Pompili G et al (2016) Microwave ablation for thyroid nodules: a new string to the bow for percutaneous treatments? Gland Surg 5:553–558

    Article  PubMed  PubMed Central  Google Scholar 

  50. Esnault O, Franc B, Menegaux F et al (2011) High-intensity focused ultrasound ablation of thyroid nodules: first human feasibility study. Thyroid 21:965–973

    Article  PubMed  Google Scholar 

  51. Lang BH-H, Wu ALH (2017) High intensity focused ultrasound (HIFU) ablation of benign thyroid nodules - a systematic review. J Ther Ultrasound 5:11

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mader OM, Tanha NF, Mader A et al (2017) Comparative study evaluating the efficiency of cooled and uncooled single-treatment MWA in thyroid nodules after a 3-month follow up. Eur J Radiol 4:4–8

    Article  Google Scholar 

  53. Yue W-W, Wang S-R, Lu F et al (2017) Radiofrequency ablation vs. microwave ablation for patients with benign thyroid nodules: a propensity score matching study. Endocrine 55:485–495

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natascha Raczynski.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Hüdayi Korkusuz.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Methodology

• retrospective

• observational

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkusuz, Y., Gröner, D., Raczynski, N. et al. Thermal ablation of thyroid nodules: are radiofrequency ablation, microwave ablation and high intensity focused ultrasound equally safe and effective methods?. Eur Radiol 28, 929–935 (2018). https://doi.org/10.1007/s00330-017-5039-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5039-x

Keywords

Navigation