European Radiology

, Volume 27, Issue 6, pp 2267–2274 | Cite as

Breast dose reduction for chest CT by modifying the scanning parameters based on the pre-scan size-specific dose estimate (SSDE)

  • Masafumi Kidoh
  • Daisuke Utsunomiya
  • Seitaro Oda
  • Takeshi Nakaura
  • Yoshinori Funama
  • Hideaki Yuki
  • Kenichiro Hirata
  • Tomohiro Namimoto
  • Daisuke Sakabe
  • Masahiro Hatemura
  • Yasuyuki Yamashita



To investigate the usefulness of modifying scanning parameters based on the size-specific dose estimate (SSDE) for a breast-dose reduction for chest CT.

Materials and methods

We scanned 26 women with a fixed volume CT dose index (CTDIvol) (15 mGy) and another 26 with a fixed SSDE (15 mGy) protocol (protocol 1 and 2, respectively). In protocol 2, tube current was calculated based on the patient habitus obtained on scout images. We compared the mean breast dose and the inter-patient breast dose variability and performed linear regression analysis of the breast dose and the body mass index (BMI) of the two protocols.


The mean breast dose was about 35 % lower under protocol 2 than protocol 1 (10.9 mGy vs. 16.8 mGy, p < 0.01). The inter-patient breast dose variability was significantly lower under protocol 2 than 1 (1.2 mGy vs. 2.5 mGy, p < 0.01). We observed a moderate negative correlation between the breast dose and the BMI under protocol 1 (r = 0.43, p < 0.01); there was no significant correlation (r = 0.06, p = 0.35) under protocol 2.


The SSDE-based protocol achieved a reduction in breast dose and in inter-patient breast dose variability.

Key Points

CT scan parameters can be modified based on the pre-scan SSDE.

The pre-scan SSDE is useful for a breast dose reduction.

The fixed SSDE protocol reduced individual variations in the breast dose.


Chest CT Breast radiation dose SSDE CTDIvol MOSFET 



Adaptive iterative dose reduction




Body mass index


Body weight


Computed tomography


Volume CT dose index


Dose length product




Metal oxide semiconductor field effect transistor


Region of interest


Standard deviation


Size-specific dose estimate



We thank Akira Taniguchi and Takashi Tsutsumi (Centre for Medical Research and Development, Toshiba Medical Systems Corporation) for valuable technical comments. The scientific guarantor of this publication is Yasuyuki Yamashita. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. None of our study subjects or cohorts have been previously reported. Methodology: Prospective, case–control study, performed at one institution.


  1. 1.
    Boice JD Jr, Monson RR (1977) Breast cancer in women after repeated fluoroscopic examinations of the chest. J Natl Cancer Inst 59:823–832CrossRefPubMedGoogle Scholar
  2. 2.
    Tokunaga M, Land CE, Yamamoto T et al (1987) Incidence of female breast cancer among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1980. Radiat Res 112:243–272CrossRefPubMedGoogle Scholar
  3. 3.
    Shore RE, Hempelmann LH, Kowaluk E et al (1977) Breast neoplasms in women treated with x-rays for acute postpartum mastitis. J Natl Cancer Inst 59:813–822CrossRefPubMedGoogle Scholar
  4. 4.
    Donnelly LF, Frush DP (2001) Fallout from recent articles on radiation dose and pediatric CT. Pediatr Radiol 31:388, discussion 389–391CrossRefPubMedGoogle Scholar
  5. 5.
    Brenner DJ, Elliston CD, Hall EJ, Berdon WE (2001) Estimates of the cancer risks from pediatric CT radiation are not merely theoretical: comment on "point/counterpoint: in x-ray computed tomography, technique factors should be selected appropriate to patient size. against the proposition". Med Phys 28:2387–2388CrossRefPubMedGoogle Scholar
  6. 6.
    Elojeimy S, Tipnis S, Huda W (2010) Relationship between radiographic techniques (kilovolt and milliampere-second) and CTDI(VOL). Radiat Prot Dosim 141:43–49CrossRefGoogle Scholar
  7. 7.
    Kidoh M, Utsunomiya D, Oda S et al (2015) Validity of the size-specific dose estimate in adults undergoing coronary CT angiography: comparison with the volume CT dose index. Int J Cardiovasc Imaging 31:205–211CrossRefGoogle Scholar
  8. 8.
    Yamashiro T, Miyara T, Honda O et al (2014) Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) improves chest CT image quality and reduces radiation exposure. PLoS One 9, e105735CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Emigh B, Gordon CL, Connolly BL, Falkiner M, Thomas KE (2013) Effective dose estimation for pediatric upper gastrointestinal examinations using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology. Pediatr Radiol 43:1108–1116CrossRefPubMedGoogle Scholar
  10. 10.
    Mattar EH, Hammad LF, Al-Mohammed HI (2011) Measurement and comparison of skin dose using OneDose MOSFET and Mobile MOSFET for patients with acute lymphoblastic leukemia. Med Sci Monit 17:MT51–55CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kinhikar RA, Murthy V, Goel V, Tambe CM, Dhote DS, Deshpande DD (2009) Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy. Appl Radiat Isot 67:1683–1685CrossRefPubMedGoogle Scholar
  12. 12.
    Debray MP, Dauriat G, Khalil A et al (2015) Diagnostic accuracy of low-mA chest CT reconstructed with Model Based Iterative Reconstruction in the detection of early pleuro-pulmonary complications following a lung transplantation. Eur Radiol. doi: 10.1007/s00330-015-4126-0 PubMedGoogle Scholar
  13. 13.
    Ichikawa Y, Kitagawa K, Nagasawa N, Murashima S, Sakuma H (2013) CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction. BMC Med Imaging 13:27CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Qi LP, Li Y, Tang L et al (2012) Evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction with the same group of patients. Br J Radiol 85:e906–911CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen JH, Jin EH, He W, Zhao LQ (2014) Combining automatic tube current modulation with adaptive statistical iterative reconstruction for low-dose chest CT screening. PLoS One 9, e92414CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. AJR Am J Roentgenol 188:540–546CrossRefPubMedGoogle Scholar
  17. 17.
    Huda W, Sterzik A, Tipnis S, Schoepf UJ (2010) Organ doses to adult patients for chest CT. Med Phys 37:842–847CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Strauss KJ (2014) Dose indices: everybody wants a number. Pediatr Radiol 44:450–459CrossRefPubMedGoogle Scholar
  19. 19.
    Niemann T, Zbinden I, Roser HW, Bremerich J, Remy-Jardin M, Bongartz G (2013) Computed tomography for pulmonary embolism: assessment of a 1-year cohort and estimated cancer risk associated with diagnostic irradiation. Acta Radiol 54:778–784CrossRefPubMedGoogle Scholar
  20. 20.
    Preston DL, Ron E, Tokuoka S et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–64CrossRefPubMedGoogle Scholar
  21. 21.
    Preston DL, Mattsson A, Holmberg E, Shore R, Hildreth NG, Boice JD Jr (2002) Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res 158:220–235CrossRefPubMedGoogle Scholar
  22. 22.
    Boice JD Jr, Land CE, Shore RE, Norman JE, Tokunaga M (1979) Risk of breast cancer following low-dose radiation exposure. Radiology 131:589–597CrossRefPubMedGoogle Scholar
  23. 23.
    Hill DA, Preston-Martin S, Ross RK, Bernstein L (2002) Medical radiation, family history of cancer, and benign breast disease in relation to breast cancer risk in young women, USA. Cancer Causes Control 13:711–718CrossRefPubMedGoogle Scholar
  24. 24.
    Kim YK, Sung YM, Choi JH, Kim EY, Kim HS (2013) Reduced radiation exposure of the female breast during low-dose chest CT using organ-based tube current modulation and a bismuth shield: comparison of image quality and radiation dose. AJR Am J Roentgenol 200:537–544CrossRefPubMedGoogle Scholar
  25. 25.
    Angel E, Yaghmai N, Jude CM et al (2009) Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT. Phys Med Biol 54:497–512CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Euler A, Szucs-Farkas Z, Falkowski AL et al (2015) Organ-based tube current modulation in a clinical context: Dose reduction may be largely overestimated in breast tissue. Eur Radiol. doi: 10.1007/s00330-015-4085-5 Google Scholar
  27. 27.
    Seidenfuss A, Mayr A, Schmid M, Uder M, Lell MM (2014) Dose reduction of the female breast in chest CT. AJR Am J Roentgenol 202:W447–452CrossRefPubMedGoogle Scholar
  28. 28.
    Greess H, Lutze J, Nomayr A et al (2004) Dose reduction in subsecond multislice spiral CT examination of children by online tube current modulation. Eur Radiol 14:995–999CrossRefPubMedGoogle Scholar
  29. 29.
    Kalra MK, Maher MM, Kamath RS et al (2004) Sixteen-detector row CT of abdomen and pelvis: study for optimization of Z-axis modulation technique performed in 153 patients. Radiology 233:241–249CrossRefPubMedGoogle Scholar
  30. 30.
    Schindera ST, Nelson RC, Toth TL et al (2008) Effect of patient size on radiation dose for abdominal MDCT with automatic tube current modulation: phantom study. AJR Am J Roentgenol 190:W100–105CrossRefPubMedGoogle Scholar
  31. 31.
    Waszczuk LA, Guzinski M, Czarnecka A, Sasiadek MJ (2015) Size-specific dose estimates for evaluation of individual patient dose in CT protocol for renal colic. AJR Am J Roentgenol 205:100–105CrossRefPubMedGoogle Scholar
  32. 32.
    Brady SL, Kaufman RA (2012) Investigation of American association of physicists in medicine report 204 size-specific dose estimates for pediatric CT implementation. Radiology 265:832–840CrossRefPubMedGoogle Scholar
  33. 33.
    Christner JA, Braun NN, Jacobsen MC, Carter RE, Kofler JM, McCollough CH (2012) Size-specific dose estimates for adult patients at CT of the torso. Radiology 265:841–847CrossRefPubMedGoogle Scholar
  34. 34.
    McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512CrossRefPubMedGoogle Scholar
  35. 35.
    Matsubara K, Sugai M, Toyoda A et al (2012) Assessment of an organ-based tube current modulation in thoracic computed tomography. J Appl Clin Med Phys 13:3731PubMedGoogle Scholar
  36. 36.
    Vollmar SV, Kalender WA (2008) Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol 18:1674–1682CrossRefPubMedGoogle Scholar
  37. 37.
    Hopper KD (2002) Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. Semin Ultrasound CT MR 23:423–427CrossRefPubMedGoogle Scholar
  38. 38.
    Kalra MK, Dang P, Singh S, Saini S, Shepard JA (2009) In-plane shielding for CT: effect of off-centering, automatic exposure control and shield-to-surface distance. Korean J Radiol 10:156–163CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Geleijns J, Wang J, McCollough C (2010) The use of breast shielding for dose reduction in pediatric CT: arguments against the proposition. Pediatr Radiol 40:1744–1747CrossRefPubMedGoogle Scholar
  40. 40.
    Franck C, Vandevoorde C, Goethals I et al (2016) The role of Size-Specific Dose Estimate (SSDE) in patient-specific organ dose and cancer risk estimation in paediatric chest and abdominopelvic CT examinations. Eur Radiol 26:2646–2655CrossRefPubMedGoogle Scholar
  41. 41.
    Gabusi M, Riccardi L, Aliberti C, Vio S, Paiusco M (2016) Radiation dose in chest CT: Assessment of size-specific dose estimates based on water-equivalent correction. Phys Med 32:393–397CrossRefPubMedGoogle Scholar
  42. 42.
    Yoshizumi TT, Goodman PC, Frush DP et al (2007) Validation of metal oxide semiconductor field effect transistor technology for organ dose assessment during CT: comparison with thermoluminescent dosimetry. AJR Am J Roentgenol 188:1332–1336CrossRefPubMedGoogle Scholar
  43. 43.
    Kinhikar RA, Sharma PK, Tambe CM et al (2006) Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast. Phys Med Biol 51:N263–268CrossRefPubMedGoogle Scholar
  44. 44.
    Koivisto J, Schulze D, Wolff J, Rottke D (2014) Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal oxide semiconductor field-effect transistor (MOSFET) dosemeters: a comparative study. Dent Radiogr Photogr 43:20140202Google Scholar
  45. 45.
    Foerth M, Seidenbusch MC, Sadeghi-Azandaryani M, Lechel U, Treitl KM, Treitl M (2015) Typical exposure parameters, organ doses and effective doses for endovascular aortic aneurysm repair: comparison of Monte Carlo simulations and direct measurements with an anthropomorphic phantom. Eur Radiol 25:2617–2626CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Masafumi Kidoh
    • 1
  • Daisuke Utsunomiya
    • 1
  • Seitaro Oda
    • 1
  • Takeshi Nakaura
    • 1
  • Yoshinori Funama
    • 2
  • Hideaki Yuki
    • 1
  • Kenichiro Hirata
    • 1
  • Tomohiro Namimoto
    • 1
  • Daisuke Sakabe
    • 1
  • Masahiro Hatemura
    • 1
  • Yasuyuki Yamashita
    • 1
  1. 1.Department of Diagnostic Radiology, Faculty of Life SciencesKumamoto UniversityHonjoJapan
  2. 2.Department of Medical Physics, Faculty of Life SciencesKumamoto UniversityHonjoJapan

Personalised recommendations