Advertisement

European Radiology

, Volume 27, Issue 6, pp 2657–2664 | Cite as

Detection of single-phase CTA occult vessel occlusions in acute ischemic stroke using CT perfusion-based wavelet-transformed angiography

  • Wolfgang G. Kunz
  • Wieland H. Sommer
  • Lukas Havla
  • Franziska Dorn
  • Felix G. Meinel
  • Olaf Dietrich
  • Grete Buchholz
  • Birgit Ertl-Wagner
  • Kolja M. Thierfelder
Neuro

Abstract

Objectives

To determine the detection rate of intracranial vessel occlusions using CT perfusion-based wavelet-transformed angiography (waveletCTA) in acute ischemic stroke patients, in whom single-phase CTA (spCTA) failed to detect an occlusion.

Methods

Subjects were selected from a cohort of 791 consecutive patients who underwent multiparametric CT including whole-brain CT perfusion. Inclusion criteria were (1) significant cerebral blood flow (CBF) deficit, (2) no evidence of vessel occlusion on spCTA and (3) follow-up-confirmed acute ischemic infarction. waveletCTA was independently analysed by two readers regarding presence and location of vessel occlusions. Logistic regression analysis was performed to identify predictors of waveletCTA-detected occlusions.

Results

Fifty-nine patients fulfilled the inclusion criteria. Overall, an occlusion was identified using waveletCTA in 31 (52.5 %) patients with negative spCTA. Out of 47 patients with middle cerebral artery infarction, 27 occlusions (57.4 %) were detected by waveletCTA, mainly located in the M2 (15) and M3 segments (8). The presence of waveletCTA-detected occlusions was associated with larger CBF deficit volumes (odds ratio (OR) = 1.335, p = 0.010) and shorter times from symptom onset (OR = 0.306, p = 0.041).

Conclusions

waveletCTA is able to detect spCTA occult vessel occlusions in about half of acute ischemic stroke patients and may potentially identify more patients eligible for endovascular therapy.

Key points

waveletCTA is able to detect spCTA occult vessel occlusions in stroke patients.

waveletCTA-detected occlusions are associated with larger cerebral blood flow deficits.

waveletCTA has the potential to identify more patients eligible for endovascular therapy.

waveletCTA implies neither additional radiation exposure nor extra contrast agent.

Keywords

Angiography Wavelet transform Thrombectomy Thrombolysis Stroke 

Abbreviations

CBF

Cerebral blood flow

spCTA

Single-phase CT angiography

waveletCTA

CT perfusion-based wavelet-transformed angiography

WB-CTP

Whole-brain CT perfusion

Notes

Acknowledgments

The scientific guarantor of this publication is Wolfgang G. Kunz, MD. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding.

No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was waived by the institutional review board.

Methodology: retrospective, case-control study/diagnostic or prognostic study, performed at one institution.

Supplementary material

330_2016_4613_MOESM1_ESM.docx (88 kb)
ESM 1 (DOCX 88 kb)

References

  1. 1.
    Powers WJ, Derdeyn CP, Biller J et al (2015) 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 46:3020–3035CrossRefPubMedGoogle Scholar
  2. 2.
    Saver JL, Goyal M, Bonafe A et al (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372:2285–2295CrossRefPubMedGoogle Scholar
  3. 3.
    Jovin TG, Chamorro A, Cobo E et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372:2296–2306CrossRefPubMedGoogle Scholar
  4. 4.
    Campbell BC, Mitchell PJ, Kleinig TJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018CrossRefPubMedGoogle Scholar
  5. 5.
    Berkhemer OA, Fransen PS, Beumer D et al (2015) A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 372:11–20CrossRefPubMedGoogle Scholar
  6. 6.
    Coutinho JM, Liebeskind DS, Slater LA et al (2016) Mechanical thrombectomy for isolated M2 occlusions: a post hoc analysis of the STAR, SWIFT, and SWIFT PRIME studies. AJNR Am J Neuroradiol 37:667–672CrossRefPubMedGoogle Scholar
  7. 7.
    Dorn F, Lockau H, Stetefeld H et al (2015) Mechanical thrombectomy of M2-occlusion. J Stroke Cerebrovasc Dis 24:1465–1470CrossRefPubMedGoogle Scholar
  8. 8.
    Wildermuth S, Knauth M, Brandt T, Winter R, Sartor K, Hacke W (1998) Role of CT angiography in patient selection for thrombolytic therapy in acute hemispheric stroke. Stroke 29:935–938CrossRefPubMedGoogle Scholar
  9. 9.
    Lev MH, Farkas J, Rodriguez VR et al (2001) CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 25:520–528CrossRefPubMedGoogle Scholar
  10. 10.
    Smit EJ, Vonken EJ, van der Schaaf IC et al (2012) Timing-invariant reconstruction for deriving high-quality CT angiographic data from cerebral CT perfusion data. Radiology 263:216–225CrossRefPubMedGoogle Scholar
  11. 11.
    Smit EJ, Vonken EJ, van Seeters T et al (2013) Timing-invariant imaging of collateral vessels in acute ischemic stroke. Stroke 44:2194–2199CrossRefPubMedGoogle Scholar
  12. 12.
    Havla L, Schneider M, Thierfelder KM et al (2015) Validation of a method to differentiate arterial and venous vessels in CT perfusion data using linear combinations of quantitative time-density curve characteristics. Eur Radiol 25:2937–2944CrossRefPubMedGoogle Scholar
  13. 13.
    Frolich AM, Psychogios MN, Klotz E, Schramm R, Knauth M, Schramm P (2012) Angiographic reconstructions from whole-brain perfusion CT for the detection of large vessel occlusion in acute stroke. Stroke 43:97–102CrossRefPubMedGoogle Scholar
  14. 14.
    Frolich AM, Wolff SL, Psychogios MN et al (2014) Time-resolved assessment of collateral flow using 4D CT angiography in large-vessel occlusion stroke. Eur Radiol 24:390–396CrossRefPubMedGoogle Scholar
  15. 15.
    Mendrik AM, Vonken EP, de Kort GA et al (2012) Improved arterial visualization in cerebral CT perfusion-derived arteriograms compared with standard CT angiography: a visual assessment study. AJNR Am J Neuroradiol 33:2171–2177CrossRefPubMedGoogle Scholar
  16. 16.
    Smit EJ, Vonken EJ, Meijer FJ et al (2015) Timing-invariant CT angiography derived from CT perfusion imaging in acute stroke: a diagnostic performance study. AJNR Am J Neuroradiol 36:1834–1838CrossRefPubMedGoogle Scholar
  17. 17.
    Havla L, Thierfelder KM, Beyer SE, Sommer WH, Dietrich O (2015) Wavelet-based calculation of cerebral angiographic data from time-resolved CT perfusion acquisitions. Eur Radiol 25:2354–2361CrossRefPubMedGoogle Scholar
  18. 18.
    Bladin CF, Chambers BR (1993) Clinical features, pathogenesis, and computed tomographic characteristics of internal watershed infarction. Stroke 24:1925–1932CrossRefPubMedGoogle Scholar
  19. 19.
    Mangla R, Kolar B, Almast J, Ekholm SE (2011) Border zone infarcts: pathophysiologic and imaging characteristics. Radiographics 31:1201–1214CrossRefPubMedGoogle Scholar
  20. 20.
    Sourbron S, Biffar AF, Ingrisch M, Fierens Y, Luypaert R (2009) PMI0.4: platform for research in medical imaging. Proc ESMRMB, AntalyaGoogle Scholar
  21. 21.
    Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205CrossRefPubMedGoogle Scholar
  22. 22.
    Beier J, Buge T, Stroszczynski C, Oellinger H, Fleck E, Felix R (1998) 2D and 3D parameter images for the analysis of contrast medium distribution in dynamic CT and MRI. Radiologe 38:832–840CrossRefPubMedGoogle Scholar
  23. 23.
    Pexman JH, Barber PA, Hill MD et al (2001) Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol 22:1534–1542PubMedGoogle Scholar
  24. 24.
    Wardlaw JM, Mielke O (2005) Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic treatment–systematic review. Radiology 235:444–453CrossRefPubMedGoogle Scholar
  25. 25.
    Parsons MW, Pepper EM, Chan V et al (2005) Perfusion computed tomography: prediction of final infarct extent and stroke outcome. Ann Neurol 58:672–679CrossRefPubMedGoogle Scholar
  26. 26.
    Thierfelder KM, Sommer WH, Baumann AB et al (2013) Whole-brain CT perfusion: reliability and reproducibility of volumetric perfusion deficit assessment in patients with acute ischemic stroke. Neuroradiology 55:827–835CrossRefPubMedGoogle Scholar
  27. 27.
    Thierfelder KM, von Baumgarten L, Baumann AB et al (2014) Penumbra pattern assessment in acute stroke patients: comparison of quantitative and non-quantitative methods in whole brain CT perfusion. PLoS ONE 9:e105413CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19:604–607CrossRefPubMedGoogle Scholar
  29. 29.
    Olavarria VV, Delgado I, Hoppe A et al (2011) Validity of the NIHSS in predicting arterial occlusion in cerebral infarction is time-dependent. Neurology 76:62–68CrossRefPubMedGoogle Scholar
  30. 30.
    The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587CrossRefGoogle Scholar
  31. 31.
    Mikulik R, Goldemund D, Reif M, Aulicky P, Krupa P (2009) Outcome of patients with negative CT angiography results for arterial occlusion treated with intravenous thrombolysis. Stroke 40:868–872CrossRefPubMedGoogle Scholar
  32. 32.
    Lahoti S, Gokhale S, Caplan L et al (2014) Thrombolysis in ischemic stroke without arterial occlusion at presentation. Stroke 45:2722–2727CrossRefPubMedGoogle Scholar
  33. 33.
    Sylaja PN, Dzialowski I, Puetz V et al (2009) Does intravenous rtPA benefit patients in the absence of CT angiographically visible intracranial occlusion? Neurol India 57:739–743CrossRefPubMedGoogle Scholar
  34. 34.
    Arnold M, Nedeltchev K, Brekenfeld C et al (2004) Outcome of acute stroke patients without visible occlusion on early arteriography. Stroke 35:1135–1138CrossRefPubMedGoogle Scholar
  35. 35.
    Saqqur M, Uchino K, Demchuk AM et al (2007) Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke. Stroke 38:948–954CrossRefPubMedGoogle Scholar
  36. 36.
    Friedrich B, Gawlitza M, Schob S et al (2015) Distance to thrombus in acute middle cerebral artery occlusion: a predictor of outcome after intravenous thrombolysis for acute ischemic stroke. Stroke 46:692–696CrossRefPubMedGoogle Scholar
  37. 37.
    Medlin F, Amiguet M, Vanacker P, Michel P (2015) Influence of arterial occlusion on outcome after intravenous thrombolysis for acute ischemic stroke. Stroke 46:126–131CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Wolfgang G. Kunz
    • 1
  • Wieland H. Sommer
    • 1
  • Lukas Havla
    • 2
  • Franziska Dorn
    • 3
  • Felix G. Meinel
    • 1
  • Olaf Dietrich
    • 2
  • Grete Buchholz
    • 4
  • Birgit Ertl-Wagner
    • 1
  • Kolja M. Thierfelder
    • 1
  1. 1.Institute for Clinical RadiologyLudwig-Maximilian-University Hospital MunichMunichGermany
  2. 2.Josef Lissner Laboratory for Biomedical Imaging of the Institute for Clinical RadiologyLudwig-Maximilian-University Hospital MunichMunichGermany
  3. 3.Department of NeuroradiologyLudwig-Maximilian-University Hospital MunichMunichGermany
  4. 4.Department of NeurologyLudwig-Maximilian-University Hospital MunichMunichGermany

Personalised recommendations