European Radiology

, Volume 27, Issue 6, pp 2497–2506 | Cite as

Evaluation of Chondrocalcinosis and Associated Knee Joint Degeneration Using MR Imaging: Data from the Osteoarthritis Initiative

  • Alexandra S. Gersing
  • Benedikt J. Schwaiger
  • Ursula Heilmeier
  • Gabby B. Joseph
  • Luca Facchetti
  • Martin Kretzschmar
  • John A. Lynch
  • Charles E. McCulloch
  • Michael C. Nevitt
  • Lynne S. Steinbach
  • Thomas M. Link
Musculoskeletal

Abstract

Objectives

To evaluate the ability of different MRI sequences to detect chondrocalcinosis within knee cartilage and menisci, and to analyze the association with joint degeneration.

Methods

Subjects with radiographic knee chondrocalcinosis (n = 90, age 67.7 ± 7.3 years, 50 women) were selected from the Osteoarthritis Initiative and matched to controls without radiographic chondrocalcinosis (n = 90). Visualization of calcium-containing crystals (CaC) was compared between 3D T1-weighted gradient-echo (T1GE), 3D dual echo steady-state (DESS), 2D intermediate-weighted (IW), and proton density (PD)-weighted fast spin-echo (FSE) sequences obtained with 3T MRI and correlated with a semiquantitative CaC score obtained from radiographs. Structural abnormalities were assessed using Whole-Organ MRI Score (WORMS) and logistic regression models were used to compare cartilage compartments with and without CaC.

Results

Correlations between CaC counts of MRI sequences and degree of radiographic calcifications were highest for GE (rT1GE = 0.73, P < 0.001; rDESS = 0.68, P < 0.001) compared to other sequences (P > 0.05). Meniscus WORMS was significantly higher in subjects with chondrocalcinosis compared to controls (P = 0.005). Cartilage defects were significantly more frequent in compartments with CaC than without (patella: P = 0.006; lateral tibia: P < 0.001; lateral femur condyle: P = 0.017).

Conclusions

Gradient-echo sequences were most useful for the detection of chondrocalcinosis and presence of CaC was associated with higher prevalence of cartilage and meniscal damage.

Key Points

• Magnetic resonance imaging is useful for assessing burden of calcium-containing crystals (CaC).

• Gradient-echo sequences are superior to fast spin echo sequences for CaC imaging.

• Presence of CaC is associated with meniscus and cartilage degradation.

Keywords

Chondrocalcinosis Osteoarthritis Magnetic resonance imaging Musculoskeletal imaging Cartilage imaging 

Abbreviations

BMEP

Bone marrow edema pattern

BCP

Basic calcium phosphate

CaC

Calcium-containing crystal

CPPD

Calcium pyrophosphate deposition

DESS

Dual echo steady-state

FSE

Fast spin echo

GE

Gradient echo

ICC

Intra-class correlation coefficients

KL

Kellgren–Lawrence

OA

Osteoarthritis

OAI

Osteoarthritis Initiative

WORMS

Whole-Organ Magnetic Resonance Imaging Score

Notes

Acknowledgments

The scientific guarantor of this publication is Dr. Thomas M. Link, MD, PhD, Department of Radiology and Biomedical Imaging, University of California, San Francisco. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The OAI is a public-private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. Written informed consent was obtained from all subjects in this study. Institutional Review Board approval was obtained. This manuscript was prepared using an OAI public use data set and has received the approval of the OAI Publications Committee based on a review of its scientific content and data interpretation. The analyses in this study were funded through the NIH (National Institute of Arthritis and Musculoskeletal and Skin Diseases grants R01AR064771 and P50-AR060752).

References

  1. 1.
    Ea HK, Liote F (2009) Advances in understanding calcium-containing crystal disease. Curr Opin Rheumatol 21:150–157CrossRefPubMedGoogle Scholar
  2. 2.
    Wise CM (2007) Crystal-associated arthritis in the elderly. Rheum Dis Clin North Am 33:33–55CrossRefPubMedGoogle Scholar
  3. 3.
    Mitsuyama H, Healey RM, Terkeltaub RA, Coutts RD, Amiel D (2007) Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis. Osteoarthritis Cartilage 15:559–565CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Neogi T, Nevitt M, Niu J et al (2006) Lack of association between chondrocalcinosis and increased risk of cartilage loss in knees with osteoarthritis: results of two prospective longitudinal magnetic resonance imaging studies. Arthritis Rheum 54:1822–1828CrossRefPubMedGoogle Scholar
  5. 5.
    Ea HK, Nguyen C, Bazin D et al (2011) Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum 63:10–18CrossRefPubMedGoogle Scholar
  6. 6.
    Nowatzky J, Howard R, Pillinger MH, Krasnokutsky S (2010) The role of uric acid and other crystals in osteoarthritis. Curr Rheumatol Rep 12:142–148CrossRefPubMedGoogle Scholar
  7. 7.
    Fuerst M, Bertrand J, Lammers L et al (2009) Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 60:2694–2703CrossRefPubMedGoogle Scholar
  8. 8.
    Sun Y, Mauerhan DR, Honeycutt PR et al (2010) Calcium deposition in osteoarthritic meniscus and meniscal cell culture. Arthritis Res Ther 12:R56Google Scholar
  9. 9.
    Jubeck B, Gohr C, Fahey M et al (2008) Promotion of articular cartilage matrix vesicle mineralization by type I collagen. Arthritis Rheum 58:2809–2817CrossRefPubMedGoogle Scholar
  10. 10.
    Steinbach LS (2004) Calcium pyrophosphate dihydrate and calcium hydroxyapatite crystal deposition diseases: imaging perspectives. Radiol Clin North Am 42:185–205, viiCrossRefPubMedGoogle Scholar
  11. 11.
    Misra D, Guermazi A, Sieren JP et al (2015) CT imaging for evaluation of calcium crystal deposition in the knee: initial experience from the Multicenter Osteoarthritis (MOST) study. Osteoarthritis Cartilage 23:244–248CrossRefPubMedGoogle Scholar
  12. 12.
    Beltran J, Marty-Delfaut E, Bencardino J et al (1998) Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations. Skeletal Radiol 27:369–374CrossRefPubMedGoogle Scholar
  13. 13.
    Suan JC, Chhem RK, Gati JS, Norley CJ, Holdsworth DW (2005) 4 T MRI of chondrocalcinosis in combination with three-dimensional CT, radiography, and arthroscopy: a report of three cases. Skeletal Radiol 34:714–721CrossRefPubMedGoogle Scholar
  14. 14.
    Checa A, Chun W (2015) Rates of meniscal tearing in patients with chondrocalcinosis. Clin Rheumatol 34:573–577CrossRefPubMedGoogle Scholar
  15. 15.
    Lefevre N, Naouri JF, Herman S, Gerometta A, Klouche S, Bohu Y (2016) A current review of the meniscus imaging: proposition of a useful tool for its radiologic analysis. Radiol Res Pract 2016:25Google Scholar
  16. 16.
    Wadhwa V, Cho G, Moore D, Pezeshk P, Coyner K, Chhabra A (2016) T2 black lesions on routine knee MRI: differential considerations. Eur Radiol 26:2387–2399CrossRefPubMedGoogle Scholar
  17. 17.
    Peterfy C, Li J, Zaim S et al (2003) Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 32:128–132CrossRefPubMedGoogle Scholar
  18. 18.
    Felson DT, Nevitt MC, Yang M et al (2008) A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol 35:2047–2054PubMedPubMedCentralGoogle Scholar
  19. 19.
    Smith HE, Mosher TJ, Dardzinski BJ et al (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14:50–55CrossRefPubMedGoogle Scholar
  20. 20.
    Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16:1433–1441CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12:177–190CrossRefPubMedGoogle Scholar
  22. 22.
    Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM (2010) Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthritis Cartilage 18:776–786CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bucknor MD, Nardo L, Joseph GB et al (2015) Association of cartilage degeneration with four year weight gain- 3T MRI data from the osteoarthritis initiative. Osteoarthritis Cartilage. doi: 10.1016/j.joca.2014.10.013 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kaushik S, Erickson JK, Palmer WE, Winalski CS, Kilpatrick SJ, Weissman BN (2001) Effect of chondrocalcinosis on the MR imaging of knee menisci. AJR Am J Roentgenol 177:905–909CrossRefPubMedGoogle Scholar
  25. 25.
    Jungmann PM, Nevitt MC, Baum T et al (2015) Relationship of unilateral total hip arthroplasty (THA) to contralateral and ipsilateral knee joint degeneration - a longitudinal 3T MRI study from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 23:1144–1153CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stehling C, Liebl H, Krug R et al (2010) Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology 254:509–520CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kretzschmar M, Lin W, Nardo L et al (2015) Association of physical activity measured by accelerometer, knee joint abnormalities and cartilage T2-measurements obtained from 3T MRI: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). doi: 10.1002/acr.22586 Google Scholar
  28. 28.
    Riederer I, Karampinos DC, Settles M et al (2015) Double inversion recovery sequence of the cervical spinal cord in multiple sclerosis and related inflammatory diseases. AJNR Am J Neuroradiol 36:219–225CrossRefPubMedGoogle Scholar
  29. 29.
    Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840PubMedGoogle Scholar
  30. 30.
    Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268CrossRefPubMedGoogle Scholar
  31. 31.
    Baum T, Joseph GB, Arulanandan A et al (2012) Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken) 64:248–255CrossRefGoogle Scholar
  32. 32.
    Baum T, Stehling C, Joseph GB et al (2012) Changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis and their association with focal knee lesions at baseline: data from the osteoarthritis initiative. J Magn Reson Imaging 35:370–378CrossRefPubMedGoogle Scholar
  33. 33.
    Pan J, Pialat JB, Joseph T et al (2011) Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the osteoarthritis initiative. Radiology 261:507–515CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Abreu M, Johnson K, Chung CB et al (2004) Calcification in calcium pyrophosphate dihydrate (CPPD) crystalline deposits in the knee: anatomic, radiographic, MR imaging, and histologic study in cadavers. Skeletal Radiol 33:392–398CrossRefPubMedGoogle Scholar
  35. 35.
    Bloecker K, Wirth W, Guermazi A, Hitzl W, Hunter DJ, Eckstein F (2015) Longitudinal change in quantitative meniscus measurements in knee osteoarthritis--data from the osteoarthritis initiative. Eur Radiol 25:2960–2968CrossRefPubMedGoogle Scholar
  36. 36.
    Eckstein F, Boudreau R, Wang Z et al (2016) Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: a longitudinal case-control study from the osteoarthritis initiative. Eur Radiol 26:1942–1951CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Alexandra S. Gersing
    • 1
  • Benedikt J. Schwaiger
    • 1
  • Ursula Heilmeier
    • 1
  • Gabby B. Joseph
    • 1
  • Luca Facchetti
    • 1
  • Martin Kretzschmar
    • 1
  • John A. Lynch
    • 2
  • Charles E. McCulloch
    • 2
  • Michael C. Nevitt
    • 2
  • Lynne S. Steinbach
    • 1
  • Thomas M. Link
    • 1
  1. 1.Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations