Skip to main content
Log in

Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to assess septal and right ventricular insertion point (RVIP) fibrosis in patients with chronic thromboembolic pulmonary hypertension (CTEPH) via native T1 mapping and extracellular volume fraction (ECV) determination and to analyze correlations with functional parameters.

Methods

Imaging was performed at 1.5 Tesla in 24 patients diagnosed with CTEPH and 24 controls. T1 values were measured within the septal myocardium, the upper and lower RVIP, and the lateral wall at basal short axis section.

Results

The mean septal native T1 values were 1012.8 ms ± 50.5 in the CTEPH group and 956.9 ms ± 24.4 in controls (p < 0.001), upper RIVP 1050.8 ms ± 64.2 vs. 965.3 ms ± 37.1 (p < 0.001), and lower RVIP 1084.4 ms ± 93.1 vs. 959.8 ms ± 40.4 (p < 0.001). The corresponding mean ECV values were also significantly increased in the CTEPH group (p < 0.001). Native septal T1 showed a strong negative correlation with right ventricular ejection fraction (k = -0.92; p = 0.01).

Conclusions

We conclude that native T1 mapping and ECV assessment enable visualization and quantification of septal fibrosis in CTEPH patients. The results also correlate well with right ventricular ejection fraction. Therefore, these parameters might be useful for prognosis and as therapy-monitoring tool in the future.

Key Points

Septal native T1 and ECV values are significantly higher in CTEPH patients.

Native T1 and ECV values are elevated even in absence of LGE.

These techniques therefore enable an improved quantification of septal fibrosis in CTEPH.

Native T1 values also correlate well with right ventricular EF and PA-pressure.

Prognosis and therapy-monitoring might be assessable in the future with these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BPA:

balloon pulmonary angioplasty

CMR:

cardiac magnetic resonance

CO:

cardiac output

CTEPH:

chronic thromboembolic pulmonary hypertension

ECV:

extracellular volume fraction

EDD:

end-diastolic diameter

EDV:

end-diastolic volume

EF:

ejection fraction

EMB:

endomyocardial biopsy

ESD:

end-systolic diameter

ESV:

end-systolic volume

LGE:

late gadolinium enhancement

LV:

left ventricle

mPAP:

mean pulmonary arterial pressure

PA:

pulmonary artery

PAOP:

pulmonary arterial occlusion pressure

PEA:

pulmonary endarterectomy

PH:

pulmonary hypertension

PVR:

pulmonary vascular resistance

RAP:

right atrial pressure

RVIP:

right ventricular insertion point

PEA:

pulmonary endarterectomy

ROI:

region of interest

RV:

right ventricle

SD:

standard deviation

SV:

stroke volume

References

  1. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62:42–50

    Article  Google Scholar 

  2. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:34–41

    Article  Google Scholar 

  3. Pepke-Zaba J, Delcroix M, Lang I, Mayer E, Jansa P, Ambroz D et al (2011) Chronic thromboembolic pulmonary hypertension (CTEPH). Results from an international prospective registry. Circulation 124:1973–1981

    Article  PubMed  Google Scholar 

  4. Becattini C, Agnelli G, Pesavento R, Silingardi M, Poggio R, Taliani MR et al (2006) Incidence of chronic thromboembolic pulmonary hypertension after a first episode of pulmonary embolism. Chest 130:172–175

    Article  PubMed  Google Scholar 

  5. Pengo V, Lensing AW, Prins MH, Marchiori A, Davidson BL, Tiozzo F et al (2004) Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 350:2257–2264

    Article  CAS  PubMed  Google Scholar 

  6. Klok FA, van Kralingen KW, van Dijk AP, Heyning FH, Vliegen HW, Huisman MV et al (2010) Prospective cardiopulmonary screening program to detect chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Haematologica 95:970–975

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berghaus TM, Barac M, von Scheidt W, Schwaiblmair M (2011) Echocardiographic evaluation for pulmonary hypertension after recurrent pulmonary embolism. Thromb Res 128:e142–e147

    Article  Google Scholar 

  8. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:43–54

    Article  Google Scholar 

  9. Mayer E, Jenkins D, Lindner J, D’Armini A, Kloek J, Meyns B et al (2011) Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg 141:702–710

    Article  PubMed  Google Scholar 

  10. Wirth G, Brüggemann K, Bostel T, Mayer E, Düber C, Kreitner KF (2014) Chronic Thromboembolic Pulmonary Hypertension (CTEPH) – Potential Role of Multidetector-Row CT (MD-CT) and MR imaging in the diagnosis and differential diagnosis of the disease. Fortsch Röntgenstr 186:751–761

    Article  CAS  Google Scholar 

  11. Bradlow WM, Gibbs JS, Mohiaddin RH (2012) Cardiovascular magnetic resonance in pulmonary hypertension. J Cardiovasc Magn Reson 14:6

    Article  PubMed  PubMed Central  Google Scholar 

  12. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115:343–349

    Article  PubMed  Google Scholar 

  13. Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W et al (2002) Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 39:1214–1219

    Article  PubMed  Google Scholar 

  14. Walker CM, Chung JH, Reddy GP (2012) Septal Bounce J Thorac Imaging 27:W1

    Article  PubMed  Google Scholar 

  15. Sanz J, Dellegrottaglie S, Kariisa M, Sulica R, Poon M, O’Donnell TP et al (2007) Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol 100:731–735

    Article  PubMed  Google Scholar 

  16. McCann GP, Beek AM, Vonk-Noordegraaf A, van Rossum AC (2005) Delayed contrast-enhanced magnetic resonance imaging in pulmonary arterial hypertension. Circulation 112, e268

    Article  PubMed  Google Scholar 

  17. Sato T, Tsujino I, Ohira H, Oyama-Manabe N, Ito YM, Noguchi T et al (2013) Paradoxial interventricular septal motion as a major determinat of late gadolinium enhancement in ventricular insertion points in pulmonary hypertension. PLoS One 8, e66724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Swift AJ, Rajaram S, Capener D, Elliot C, Condliffe R, Wild JM et al (2014) LGE patterns in pulmonary hypertension do not impact overall mortality. J Am Coll Cardiol Imaging 7:1209–1217

    Article  Google Scholar 

  19. Bradlow WM, Assomull R, Kilner PJ, Gibbs JS, Sheppard MN, Mohiaddin RH (2010) Understanding late gadolinium enhancement in pulmonary hypertension. Circ Cardiovasc Imaging 3:501–503

    Article  PubMed  Google Scholar 

  20. Kuribayashi T, Roberts WC (1992) Myocardial disarray at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy. Am J Cardiol 70:1333–1340

    Article  CAS  PubMed  Google Scholar 

  21. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee SP, Lee W, Lee JM, Park EA, Kim HK, Kim YJ et al (2015) Assessment of diffuse myocardial fibrosis by using mr imaging in asymptomatic patients with aortic stenosis. Radiology 274:359–369

    Article  PubMed  Google Scholar 

  24. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R et al (2012) Myocardial tissue characterization using magnetic resonance non contrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 6:726–733

    Article  Google Scholar 

  25. Bandula S, White SK, Flett AS, Lawrence D, Pugliese F, Ashworth MT et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403

    Article  PubMed  Google Scholar 

  26. Garcia-Alvarez A, Garcia-Lunar I, Pereda D, Fernandez-Jimenez R, Sanchez-Gonzalez J, Mirelis JG et al (2015) Association of myocardial T1-mapping CMR with hemodynamics and RV performance in pulmonary hypertension. J Am Coll Cardiol Imaging 8:76–82

    Article  Google Scholar 

  27. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified look-locker inversion recovery (MOLLI) for high resolution T1 mapping of the heart. Magn Reson Med 52:141–146

    Article  PubMed  Google Scholar 

  28. Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, Boston

    Google Scholar 

  29. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985

    Article  PubMed  Google Scholar 

  30. O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874

    Article  PubMed  Google Scholar 

  31. Barone-Rochette G, Pierard S, De Meester de Ravenstein C, Seldrum S, Melchior J, Maes F et al (2014) Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 64:144–154

    Article  PubMed  Google Scholar 

  32. Krittayaphong R, Saiviroonporn P, Boonyasirinant T, Udompunturak S (2011) Prevalence and prognosis of myocardial scar in patients with known or suspected coronary artery disease and normal wall motion. J Cardiovasc Magn Reson 13:2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhu Y, Park EA, Lee W, Kim HK, Chu A, Chung JW et al (2015) Extent of late gadolinium enhancement at right ventricular insertion points in patients with hypertrophic cardiomyopathy: relation with diastolic dysfunction. Eur Radiol 25:1190–1200

    Article  PubMed  Google Scholar 

  34. Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SJ, Burke M et al (2004) The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 43:2260–2264

    Article  PubMed  Google Scholar 

  35. Kim RJ, Judd RM (2003) Gadolinium-enhanced magnetic resonance imaging in hypertrophic cardiomyopathy: in vivo imaging of the pathologic substrate for premature cardiac death? J Am Coll Cardiol 41:1568–1572

    Article  PubMed  Google Scholar 

  36. Schelbert EB, Messroghli DR (2016) State of the art: clinical applications of cardiac T1 mapping. Radiology 278:658–676

    Article  PubMed  Google Scholar 

  37. Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM et al (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP et al (2012) Non contrast T1 mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karamitsos TD, Pichnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM et al (2013) Non-contrast T1 mapping for the diagnosis of cardiac amyloidosis. J Am Coll Cardiol Img 6:488–497

    Article  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Prof. Dr. Gabriele A. Krombach. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz C. Roller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roller, F.C., Wiedenroth, C., Breithecker, A. et al. Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension. Eur Radiol 27, 1980–1991 (2017). https://doi.org/10.1007/s00330-016-4585-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4585-y

Keywords

Navigation