Advertisement

European Radiology

, Volume 27, Issue 5, pp 1980–1991 | Cite as

Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension

  • Fritz C. Roller
  • Christoph Wiedenroth
  • Andreas Breithecker
  • Christoph Liebetrau
  • Eckhard Mayer
  • Christian Schneider
  • Andreas Rolf
  • Christian Hamm
  • Gabriele A. Krombach
Cardiac

Abstract

Objectives

The aim of this study was to assess septal and right ventricular insertion point (RVIP) fibrosis in patients with chronic thromboembolic pulmonary hypertension (CTEPH) via native T1 mapping and extracellular volume fraction (ECV) determination and to analyze correlations with functional parameters.

Methods

Imaging was performed at 1.5 Tesla in 24 patients diagnosed with CTEPH and 24 controls. T1 values were measured within the septal myocardium, the upper and lower RVIP, and the lateral wall at basal short axis section.

Results

The mean septal native T1 values were 1012.8 ms ± 50.5 in the CTEPH group and 956.9 ms ± 24.4 in controls (p < 0.001), upper RIVP 1050.8 ms ± 64.2 vs. 965.3 ms ± 37.1 (p < 0.001), and lower RVIP 1084.4 ms ± 93.1 vs. 959.8 ms ± 40.4 (p < 0.001). The corresponding mean ECV values were also significantly increased in the CTEPH group (p < 0.001). Native septal T1 showed a strong negative correlation with right ventricular ejection fraction (k = -0.92; p = 0.01).

Conclusions

We conclude that native T1 mapping and ECV assessment enable visualization and quantification of septal fibrosis in CTEPH patients. The results also correlate well with right ventricular ejection fraction. Therefore, these parameters might be useful for prognosis and as therapy-monitoring tool in the future.

Key Points

Septal native T1 and ECV values are significantly higher in CTEPH patients.

Native T1 and ECV values are elevated even in absence of LGE.

These techniques therefore enable an improved quantification of septal fibrosis in CTEPH.

Native T1 values also correlate well with right ventricular EF and PA-pressure.

Prognosis and therapy-monitoring might be assessable in the future with these parameters.

Keywords

MRI PH CTEPH T1 Mapping ECV 

Abbreviations

BPA

balloon pulmonary angioplasty

CMR

cardiac magnetic resonance

CO

cardiac output

CTEPH

chronic thromboembolic pulmonary hypertension

ECV

extracellular volume fraction

EDD

end-diastolic diameter

EDV

end-diastolic volume

EF

ejection fraction

EMB

endomyocardial biopsy

ESD

end-systolic diameter

ESV

end-systolic volume

LGE

late gadolinium enhancement

LV

left ventricle

mPAP

mean pulmonary arterial pressure

PA

pulmonary artery

PAOP

pulmonary arterial occlusion pressure

PEA

pulmonary endarterectomy

PH

pulmonary hypertension

PVR

pulmonary vascular resistance

RAP

right atrial pressure

RVIP

right ventricular insertion point

PEA

pulmonary endarterectomy

ROI

region of interest

RV

right ventricle

SD

standard deviation

SV

stroke volume

Notes

Acknowledgments

The scientific guarantor of this publication is Prof. Dr. Gabriele A. Krombach. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, diagnostic or prognostic study, performed at one institution.

References

  1. 1.
    Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62:42–50CrossRefGoogle Scholar
  2. 2.
    Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:34–41CrossRefGoogle Scholar
  3. 3.
    Pepke-Zaba J, Delcroix M, Lang I, Mayer E, Jansa P, Ambroz D et al (2011) Chronic thromboembolic pulmonary hypertension (CTEPH). Results from an international prospective registry. Circulation 124:1973–1981CrossRefPubMedGoogle Scholar
  4. 4.
    Becattini C, Agnelli G, Pesavento R, Silingardi M, Poggio R, Taliani MR et al (2006) Incidence of chronic thromboembolic pulmonary hypertension after a first episode of pulmonary embolism. Chest 130:172–175CrossRefPubMedGoogle Scholar
  5. 5.
    Pengo V, Lensing AW, Prins MH, Marchiori A, Davidson BL, Tiozzo F et al (2004) Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 350:2257–2264CrossRefPubMedGoogle Scholar
  6. 6.
    Klok FA, van Kralingen KW, van Dijk AP, Heyning FH, Vliegen HW, Huisman MV et al (2010) Prospective cardiopulmonary screening program to detect chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Haematologica 95:970–975CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berghaus TM, Barac M, von Scheidt W, Schwaiblmair M (2011) Echocardiographic evaluation for pulmonary hypertension after recurrent pulmonary embolism. Thromb Res 128:e142–e147CrossRefGoogle Scholar
  8. 8.
    Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:43–54CrossRefGoogle Scholar
  9. 9.
    Mayer E, Jenkins D, Lindner J, D’Armini A, Kloek J, Meyns B et al (2011) Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg 141:702–710CrossRefPubMedGoogle Scholar
  10. 10.
    Wirth G, Brüggemann K, Bostel T, Mayer E, Düber C, Kreitner KF (2014) Chronic Thromboembolic Pulmonary Hypertension (CTEPH) – Potential Role of Multidetector-Row CT (MD-CT) and MR imaging in the diagnosis and differential diagnosis of the disease. Fortsch Röntgenstr 186:751–761CrossRefGoogle Scholar
  11. 11.
    Bradlow WM, Gibbs JS, Mohiaddin RH (2012) Cardiovascular magnetic resonance in pulmonary hypertension. J Cardiovasc Magn Reson 14:6CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115:343–349CrossRefPubMedGoogle Scholar
  13. 13.
    Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W et al (2002) Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 39:1214–1219CrossRefPubMedGoogle Scholar
  14. 14.
    Walker CM, Chung JH, Reddy GP (2012) Septal Bounce J Thorac Imaging 27:W1CrossRefPubMedGoogle Scholar
  15. 15.
    Sanz J, Dellegrottaglie S, Kariisa M, Sulica R, Poon M, O’Donnell TP et al (2007) Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol 100:731–735CrossRefPubMedGoogle Scholar
  16. 16.
    McCann GP, Beek AM, Vonk-Noordegraaf A, van Rossum AC (2005) Delayed contrast-enhanced magnetic resonance imaging in pulmonary arterial hypertension. Circulation 112, e268CrossRefPubMedGoogle Scholar
  17. 17.
    Sato T, Tsujino I, Ohira H, Oyama-Manabe N, Ito YM, Noguchi T et al (2013) Paradoxial interventricular septal motion as a major determinat of late gadolinium enhancement in ventricular insertion points in pulmonary hypertension. PLoS One 8, e66724CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Swift AJ, Rajaram S, Capener D, Elliot C, Condliffe R, Wild JM et al (2014) LGE patterns in pulmonary hypertension do not impact overall mortality. J Am Coll Cardiol Imaging 7:1209–1217CrossRefGoogle Scholar
  19. 19.
    Bradlow WM, Assomull R, Kilner PJ, Gibbs JS, Sheppard MN, Mohiaddin RH (2010) Understanding late gadolinium enhancement in pulmonary hypertension. Circ Cardiovasc Imaging 3:501–503CrossRefPubMedGoogle Scholar
  20. 20.
    Kuribayashi T, Roberts WC (1992) Myocardial disarray at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy. Am J Cardiol 70:1333–1340CrossRefPubMedGoogle Scholar
  21. 21.
    Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee SP, Lee W, Lee JM, Park EA, Kim HK, Kim YJ et al (2015) Assessment of diffuse myocardial fibrosis by using mr imaging in asymptomatic patients with aortic stenosis. Radiology 274:359–369CrossRefPubMedGoogle Scholar
  24. 24.
    Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R et al (2012) Myocardial tissue characterization using magnetic resonance non contrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 6:726–733CrossRefGoogle Scholar
  25. 25.
    Bandula S, White SK, Flett AS, Lawrence D, Pugliese F, Ashworth MT et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403CrossRefPubMedGoogle Scholar
  26. 26.
    Garcia-Alvarez A, Garcia-Lunar I, Pereda D, Fernandez-Jimenez R, Sanchez-Gonzalez J, Mirelis JG et al (2015) Association of myocardial T1-mapping CMR with hemodynamics and RV performance in pulmonary hypertension. J Am Coll Cardiol Imaging 8:76–82CrossRefGoogle Scholar
  27. 27.
    Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified look-locker inversion recovery (MOLLI) for high resolution T1 mapping of the heart. Magn Reson Med 52:141–146CrossRefPubMedGoogle Scholar
  28. 28.
    Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, BostonGoogle Scholar
  29. 29.
    Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985CrossRefPubMedGoogle Scholar
  30. 30.
    O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874CrossRefPubMedGoogle Scholar
  31. 31.
    Barone-Rochette G, Pierard S, De Meester de Ravenstein C, Seldrum S, Melchior J, Maes F et al (2014) Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 64:144–154CrossRefPubMedGoogle Scholar
  32. 32.
    Krittayaphong R, Saiviroonporn P, Boonyasirinant T, Udompunturak S (2011) Prevalence and prognosis of myocardial scar in patients with known or suspected coronary artery disease and normal wall motion. J Cardiovasc Magn Reson 13:2CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhu Y, Park EA, Lee W, Kim HK, Chu A, Chung JW et al (2015) Extent of late gadolinium enhancement at right ventricular insertion points in patients with hypertrophic cardiomyopathy: relation with diastolic dysfunction. Eur Radiol 25:1190–1200CrossRefPubMedGoogle Scholar
  34. 34.
    Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SJ, Burke M et al (2004) The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 43:2260–2264CrossRefPubMedGoogle Scholar
  35. 35.
    Kim RJ, Judd RM (2003) Gadolinium-enhanced magnetic resonance imaging in hypertrophic cardiomyopathy: in vivo imaging of the pathologic substrate for premature cardiac death? J Am Coll Cardiol 41:1568–1572CrossRefPubMedGoogle Scholar
  36. 36.
    Schelbert EB, Messroghli DR (2016) State of the art: clinical applications of cardiac T1 mapping. Radiology 278:658–676CrossRefPubMedGoogle Scholar
  37. 37.
    Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM et al (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP et al (2012) Non contrast T1 mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Karamitsos TD, Pichnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM et al (2013) Non-contrast T1 mapping for the diagnosis of cardiac amyloidosis. J Am Coll Cardiol Img 6:488–497CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Fritz C. Roller
    • 1
  • Christoph Wiedenroth
    • 2
  • Andreas Breithecker
    • 1
  • Christoph Liebetrau
    • 3
  • Eckhard Mayer
    • 2
  • Christian Schneider
    • 1
  • Andreas Rolf
    • 3
  • Christian Hamm
    • 3
    • 4
  • Gabriele A. Krombach
    • 1
  1. 1.Department of Diagnostic and Interventional RadiologyJustus-Liebig-University GiessenGiessenGermany
  2. 2.Department of Thoracic SurgeryKerckhoff Heart and Thorax CentreBad NauheimGermany
  3. 3.Department of CardiologyKerckhoff Heart and Thorax CentreBad NauheimGermany
  4. 4.Department of CardiologyJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations