Skip to main content
Log in

Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

  • Hepatobiliary-Pancreas
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate.

Methods

Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction.

Results

In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002).

Conclusion

These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI.

Key Points

Expression of hepatocyte transporters is modified in rats with advanced liver fibrosis.

Kinetic parameters at gadoxetate-enhanced MRI are correlated with hepatocyte transporter expression.

Hepatocyte transport function can be assessed with compartmental analysis of gadoxetate-enhanced MRI.

Compartmental analysis of gadoxetate-enhanced MRI might provide biomarkers in advanced liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. International Transporter Consortium, Giacomini KM, Huang SM et al (2010) Membrane transporters in drugdevelopment. Nat Rev Drug Discov 9:215–236

    Article  Google Scholar 

  2. Stieger B, Heger M, de Graaf W, Paumgartner G, van Gulik T (2012) The emerging role of transport systems in liver function tests. Eur J Pharmacol 675:1–5

    Article  CAS  PubMed  Google Scholar 

  3. Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165:1260–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gu X, Manautou JE (2012) Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 42:482–538

    Article  Google Scholar 

  5. Van Beers BE, Pastor CM, Hussain HK (2012) Primovist, Eovist: what to expect? J Hepatol 57:421–429

    Article  PubMed  Google Scholar 

  6. Jia J, Puls D, Oswald S et al (2014) Characterization of the intestinal and hepatic uptake/efflux transport of the magnetic resonance imaging contrast agent gadolinium-ethoxylbenzyl-diethylenetriamine-pentaacetic acid. Investig Radiol 49:78–86

    Article  CAS  Google Scholar 

  7. Gambhir SS, Hawkins RA, Huang SC, Hall TR, Busuttil RW, Phelps ME (1989) Tracer kinetic modeling approaches for the quantification of hepatic function with technetium-99m DISIDA and scintigraphy. J Nucl Med 30:1507–1518

    CAS  PubMed  Google Scholar 

  8. Araikum S, Mdaka T, Esser JD, Zuckerman M (1996) Hepatobiliary kinetics of technetium-99m-IDA analogs: quantification by linear systems theory. J Nucl Med 37:1323–1330

    CAS  PubMed  Google Scholar 

  9. Peters AM (1998) Fundamental of tracer kinetics for radiologists. Br J Radiol 71:1116–1129

    Article  CAS  PubMed  Google Scholar 

  10. Nilsson H, Nordell A, Vargas R, Douglas L, Jonas E, Blomqvist L (2009) Assessment of hepatic extraction fraction and input relative blood flow using dynamic hepatocyte-specific contrast-enhanced MRI. J Magn Reson Imaging 29:1323–1331

    Article  PubMed  Google Scholar 

  11. Sourbron S, Sommer WH, Reiser MF, Zech CJ (2012) Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology 263:874–883

    Article  PubMed  Google Scholar 

  12. Nilsson H, Blomqvist L, Douglas L, Nordell A, Jonas E (2010) Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI. HPB 12:567–576

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nilsson H, Blomqvist L, Douglas L et al (2013) Gd-EOB-DTPA-enhanced MRI for the assessment of liver function and volume in liver cirrhosis. Br J Radiol 86:20120653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lagadec M, Doblas S, Giraudeau C et al (2015) Advanced fibrosis: correlation between pharmacokinetic parameters at dynamic gadoxetate-enhanced MR imaging and hepatocyte organic anion transporter expression in rat liver. Radiology 274:379–386

    Article  PubMed  Google Scholar 

  15. Haimerl M, Schlabeck M, Verloh N et al (2016) Volume-assisted estimation of liver function based on Gd-EOB-DTPA-enhanced MR relaxometry. Eur Radiol 26:1125–1133

    Article  PubMed  Google Scholar 

  16. Starkel P, Leclercq IA (2011) Animal models for the study of hepatic fibrosis. Best Pract Res Clin Gastroenterol 25:319–333

    Article  CAS  PubMed  Google Scholar 

  17. Rusinek H, Lee VS, Johnson G (2001) Optimal dose of Gd-DTPA in dynamic MR studies. Magn Reson Med 46:312–316

    Article  CAS  PubMed  Google Scholar 

  18. Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  19. Van Beers BE, Materne R, Annet L et al (2003) Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit. Magn Reson Med 49:692–699

    Article  PubMed  Google Scholar 

  20. Veteläinen RL, Bennink RJ, de Bruin K, van Vliet A, van Gulik TM (2006) Hepatobiliary function assessed by 99mTc-mebrofenin cholescintigraphy in the evaluation of severity of steatosis in a rat model. Eur J Nucl Med Mol Imaging 33:1107–1114

    Article  PubMed  Google Scholar 

  21. Blouin A, Bolender RP, Weibel ER (1977) Distribution of organelles and membranes between hepatocytes and non hepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 72:441–455

    Article  CAS  PubMed  Google Scholar 

  22. Bedossa P (1994) Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology 20:15–20

    Article  Google Scholar 

  23. Peters AM, Myers MJ, Mohammadtaghi S, Mubashar M, Mathie RT (1998) Bidirectional transport of iminodiacetic organic anion analogues between plasma and hepatocyte. Eur J Nucl Med 25:766–773

    Article  CAS  PubMed  Google Scholar 

  24. Pfeifer ND, Hardwick RN, Brouwer KL (2014) Role of hepatic efflux transporters in regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol 54:509–535

    Article  CAS  PubMed  Google Scholar 

  25. Yoon JH, Lee JM, Paek M, Han JK, Choi BI (2016) Quantitative assessment of hepatic function: modified look-locker inversion recovery (MOLLI) sequence for T1 mapping on Gd-EOB-DTPA-enhanced liver MR imaging. Eur Radiol 26:1775–1782

    Article  PubMed  Google Scholar 

  26. Geisel D, Lüdemann L, Fröling V et al (2015) Imaging-based evaluation of liver function: comparison of 99mTc-mebrofenin hepatobiliary scintigraphy and Gd-EOB-DTPA-enhanced. MRI. Eur Radiol 25:1384–1391

    Article  PubMed  Google Scholar 

  27. Ba-Ssalamah A, Bastatai N, Wibmer A et al (2016) Hepatic gadoxetic acid uptake as a measure of liver disease: where are we? J Magn Reson Imaging, in press

  28. Materne R, Van Beers BE, Smith AM et al (2000) Non-invasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model. Clin Sci 99:517–525

    Article  CAS  PubMed  Google Scholar 

  29. Kershaw LE, Buckley DL (2006) Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 56:986–992

    Article  PubMed  Google Scholar 

  30. Sanz-Requena R, Prats-Montalbán JM, Martí-Bonmatí L (2015) Automatic individual arterial input functions calculated from PCA outperform manual and population-averaged approaches for the pharmacokinetic modeling of DCE-MR images. J Magn Reson Imaging 42:477–487

    Article  PubMed  Google Scholar 

  31. Heye T, Merkle EM, Reiner CS et al (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part II. Comparison of intra- and interobserver variability with manual region of interest placement versus semiautomatic lesion segmentation and histogram analysis. Radiology 266:812–821

    Article  PubMed  Google Scholar 

  32. Schuhmann-Giampieri G, Schmitt-Willich H, Press WR, Negishi C, Weinmann HJ, Speck U (1992) Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology 183:59–64

    Article  CAS  PubMed  Google Scholar 

  33. Shen Y, Goerner FL, Snyder C et al (2015) T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T. Investig Radiol 50:330–338

    Article  CAS  Google Scholar 

  34. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investig Radiol 40:715–724h

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Valérie Paradis (department of pathology, Beaujon University Hospital Paris Nord, Clichy, France) for performing the histopathological studies. The scientific guarantor of this publication is Bernard E. Van Beers. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Approval from the institutional animal care committee was obtained. Methodology: retrospective, experimental, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Giraudeau.

Appendix

Appendix

By assuming linear tracer kinetics to describe uptake and elimination of gadoxetate in hepatocytes [12], kinetic indexes can be derived by the linear system theory such as:

$$ \frac{{\mathrm{dx}}^{\mathrm{j}}\left(\mathrm{t}\right)}{\mathrm{dt}}={\mathrm{A}}_{\mathrm{j}\mathrm{i}}{\mathrm{x}}^{\mathrm{i}}\left(\mathrm{t}\right)+{\mathrm{B}}_{\mathrm{j}\mathrm{i}}{\mathrm{u}}^{\mathrm{i}}\left(\mathrm{t}\right) $$
(1.1)

The xi(t), j, i = 1…n with n the number of compartments, describe the time t evolution of gadoxetate in each compartment. Aji is the flow into and out of each compartment, ui(t) are the input control functions for each compartment and Bji the matrix describing the method of control application. By integrating Eq. 1.3 with xi(0) = 0 for all i as initial conditions:

$$ {\mathrm{x}}^{\mathrm{j}}\left(\mathrm{t}\right) = {\mathrm{e}}^{\mathrm{Aji}\mathrm{t}}{\mathrm{x}}^{\mathrm{i}}(0)+{\displaystyle \underset{0}{\overset{\mathrm{t}}{\int }}}{\mathrm{d}\uptau \mathrm{e}}^{\mathrm{Aji}\left(\mathrm{t}-\uptau \right)}{\mathrm{B}}_{\mathrm{j}\mathrm{i}}{\mathrm{u}}^{\mathrm{i}}\left(\uptau \right) $$
(1.2)

Here, h(t) can be decomposed as the sum of the evolution of the gadotexate concentration into two compartments (hepatocytes and intra-hepatic bile ducts):

$$ h(t)={x}^1(t)+{x}^2(t) $$
(1.3)
$$ \mathrm{h}\left(\mathrm{t}\right)={\mathrm{k}}_{21}{\displaystyle \underset{0}{\overset{\mathrm{t}}{\int }}}\mathrm{d}\uptau \left[{\mathrm{e}}^{-\left({\mathrm{k}}_{32}+{\mathrm{k}}_{12}\right)\mathrm{t}}\left(\mathrm{t}-\uptau \right)+\left(\frac{{\mathrm{k}}_{32}}{{\mathrm{k}}_{32}+{\mathrm{k}}_{12}-{\mathrm{k}}_3}\left({\mathrm{e}}^{-{\mathrm{k}}_3\mathrm{t}}-{\mathrm{e}}^{-\left({\mathrm{k}}_{32}+{\mathrm{k}}_{12}\right)\mathrm{t}}\right)\right)\left(\mathrm{t}-\uptau \right)\right]\mathrm{B}\left(\uptau \right) $$
(1.4)
$$ \mathrm{h}\left(\mathrm{t}\right)={\mathrm{k}}_{21}{\displaystyle \underset{0}{\overset{\mathrm{t}}{\int }}}\mathrm{d}\uptau \left[{\mathrm{e}}^{-\left({\mathrm{k}}_{32}+{\mathrm{k}}_{12}\right)\mathrm{t}}\left(\mathrm{t}-\uptau \right)+\left(\frac{{\mathrm{k}}_{32}}{{\mathrm{k}}_{32}+{\mathrm{k}}_{12}-{\mathrm{k}}_3}\left({\mathrm{e}}^{-{\mathrm{k}}_3\mathrm{t}}-{\mathrm{e}}^{-\left({\mathrm{k}}_{32}+{\mathrm{k}}_{12}\right)\mathrm{t}}\right)\right)\left(\mathrm{t}-\uptau \right)\right] $$
(1.5)
$$ \mathrm{h}\left(\mathrm{t}\right) = {\mathrm{k}}_{21}-\frac{{\mathrm{k}}_{21}{\mathrm{k}}_{32}}{{\mathrm{k}}_{32}+{\mathrm{k}}_{12}-{\mathrm{k}}_3}{\mathrm{e}}^{-\left({\mathrm{k}}_{32}+{\mathrm{k}}_{12}\right)\mathrm{t}}+\frac{{\mathrm{k}}_{21}{\mathrm{k}}_{32}}{{\mathrm{k}}_{32}+{\mathrm{k}}_{12}-{\mathrm{k}}_3}{\mathrm{e}}^{-{\mathrm{k}}_3\mathrm{t}} $$
(1.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraudeau, C., Leporq, B., Doblas, S. et al. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis. Eur Radiol 27, 1804–1811 (2017). https://doi.org/10.1007/s00330-016-4536-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4536-7

Keywords

Navigation