Skip to main content
Log in

Assessment of ventriculo-vascular properties in repaired coarctation using cardiac magnetic resonance-derived aortic, left atrial and left ventricular strain

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

In patients with repaired coarctation of aorta (CoA), we assessed ventriculo-vascular characteristics using CMR-derived aortic area strain (AAS), left atrial (LA) and left ventricular (LV) longitudinal and circumferential strain (LS, CS).

Methods

Seventy-five subjects including 50 with repaired CoA divided into hypertensive (n = 25), normotensive (n = 25) and 25 controls were studied. AAS was measured at 3 levels: ascending aorta, proximal descending and descending aorta. LA and LV LS were measured using CMR-feature tracking. LA and LV end-diastolic volumes, ejection fraction (EF) and mass were measured.

Results

Mean patient age was 19.7 ± 6.7 and controls 23 ± 15 (years). All strains (LA, LV, ascending and descending aortic) were lower in CoA subgroups compared to controls except the AAS at diaphragm, which was not different. Comparisons between hypertensive and normotensive CoA showed no differences in LV mass, LV volumetric indices, and LA and LV strain indices; however, ascending AAS was lower in hypertensive subgroup (p = 0.02). Ascending AAS was correlated with LV mass (r = −0.4, p = 0.005), LVEF (r = −0.4, p = 0.004), systolic blood pressure (r = −0.5, p = 0.0001) and LVLS (r = 0.5, p = 0.001).

Conclusions

Ascending AAS correlated with LV mass, EF and LVLS. In hypertensive CoA, ascending AAS was reduced compared to normotensive CoA and controls, indicating vascular remodelling differences influenced by ongoing hypertension.

Key Points

Impaired arterial strain is a measure of increased stiffness in arteries

Ascending aorta strain correlates with left ventricular mass and longitudinal strain

Ascending aorta strain is significantly lower in hypertensive coarctation patients

Hypertension may be a consequence of vascular pathology persisting despite repair

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAS:

Aortic area strain

AAAS:

Ascending aortic area strain

BSA:

Body surface area

CoA:

Coarctation of the aorta

CHD:

Congenital heart disease

CMR-FT:

Cardiac magnetic resonance-feature tracking

DAAS:

Descending aortic area strain

DBP:

Diastolic blood pressure

DDAAS:

Distal descending aortic area strain

EDVi:

Indexed end-diastolic volume

EF:

Ejection fraction

HT:

Hypertensive

LA:

Left atrium

LALS:

LA longitudinal strain

LV:

Left ventricle

LVCS:

LV circumferential strain

LVLS:

LV longitudinal strain

LV mass i:

Indexed LV mass

NT:

Normotensive

SBP:

Systolic blood pressure

References

  1. Fixler DE, Pastor P, Chamberlin M, Sigman E, Eifler CW (1990) Trends in congenital heart disease in Dallas County births. Circulation 81:137–142

    Article  CAS  PubMed  Google Scholar 

  2. Cohen M, Fuster V, Steele PM, Driscoll D, McGoon DC (1989) Coarctation of the aorta. Long-term follow-up and prediction of outcome after surgical correction. Circulation 80:840–845

    Article  CAS  PubMed  Google Scholar 

  3. Toro-Salazar OH, Steinberger J, Thomas W, Rocchini AP, Carpenter B, Moller JH (2002) Long-term follow-up of patients after coarctation of the aorta repair. Am J Cardiol 89:541–547

    Article  PubMed  Google Scholar 

  4. Moskowitz WB, Schieken RM, Mosteller M, Bossano R (1990) Altered systolic and diastolic function in children after “successful” repair of coarctation of the aorta. Am Heart J 120:103–109

    Article  CAS  PubMed  Google Scholar 

  5. Kimball T, Reynolds J, Mays W, Khoury P, Claytor R, Daniels SR (1994) Persistent hyperdynamic cardiovascular state at rest and during exercise in children after successful repair of coarctation of the aorta. J Am Coll Cardiol 24:194–200

    Article  CAS  PubMed  Google Scholar 

  6. Gentles TL, Sanders SP, Colan SD (2000) Misrepresentation of left ventricular contractile function by endocardial indexes: clinical implications after coarctation repair. Am Heart J 140:585–595

    Article  CAS  PubMed  Google Scholar 

  7. Leandro J, Smallhorn JF, Benson L, Musewe N, Balfe JW, Dyck JD et al (1992) Ambulatory blood pressure monitoring and left ventricular mass and function after successful surgical repair of coarctation of the aorta. J Am Coll Cardiol 20:197–204

    Article  CAS  PubMed  Google Scholar 

  8. Lombardi KC, Northrup V, McNamara RL, Sugeng L, Weismann CG (2013) Aortic stiffness and left ventricular diastolic function in children following early repair of aortic coarctation. Am J Cardiol 112:1828–1833

    Article  PubMed  Google Scholar 

  9. Sen O, Abali G, Yavuz B, Batur MK (2013) Evaluation of correlation between aortic elastic parameters and atrial electromechanical abnormalities in hypertensive patients. Echocardiography 30:1214–1218

    Article  PubMed  Google Scholar 

  10. Canniffe C, Ou P, Walsh K, Bonnet D, Celermajer D (2013) Hypertension after repair of aortic coarctation-a systematic review. Int J Cardiol 167:2456–2461

    Article  PubMed  Google Scholar 

  11. Senzaki H, Iwamoto Y, Ishido H, Masutani S, Taketazu M, Kobayashi T et al (2008) Ventricular-vascular stiffening in patients with repaired coarctation of aorta: integrated pathophysiology of hypertension. Circulation 118:S191–S198

    Article  PubMed  Google Scholar 

  12. Estensen ME, Grindheim G, Remme EW, Swillens A, Smiseth OA, Segers P et al (2012) Systemic arterial response and ventriculo-arterial interaction during normal pregnancy. Am J Hypertens 25:672–677

    Article  PubMed  Google Scholar 

  13. Szopos M, Poussineau N, Maday Y, Canniffe C, Celermajer DS, Bonnet D et al (2014) Computational modeling of blood flow in the aorta-insights into eccentric dilation of the ascending aorta after surgery for coarctation. J Thorac Cardiovasc Surg 148:1572–1582

    Article  PubMed  Google Scholar 

  14. Ou P, Celermajer DS, Mousseaux E, Giron A, Aggoun Y, Szezepanski I et al (2007) Vascular remodeling after “successful” repair of coarctation: impact of aortic arch geometry. J Am Coll Cardiol 49:883–890

    Article  PubMed  Google Scholar 

  15. Donazzan L, Crepaz R, Steufer J, Stellin G (2014) Abnormalities of aortic arch shape, central aortic flow dynamics and distensibility predispose to hypertension after successful repair of aortic coarctation. World J Pediatr Congenit Heart Surg 5:546–553

    Article  PubMed  Google Scholar 

  16. Ou P, Celermajer DS, Raisky O, Jolivet O, Buyens F, Herment A et al (2008) Angular (Gothic) aortic arch leads to enhanced systolic wave reflection, central aortic stiffness, and increased left ventricular mass late after aortic coarctation repair: evaluation with magnetic resonance flow mapping. J Thorac Cardiovasc Surg 135:62–68

    Article  PubMed  Google Scholar 

  17. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R et al (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151

    Article  PubMed  Google Scholar 

  18. Maret E, Todt T, Brudin L, Nylander E, Swahn E, Ohlsson JL et al (2009) Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar. Cardiovasc Ultrasound 7:53

    Article  PubMed  PubMed Central  Google Scholar 

  19. Truong UT, Li X, Broberg CS, Houle H, Schaal M, Ashraf M et al (2010) Significance of mechanical alterations in single ventricle patients on twisting and circumferential strain as determined by analysis of strain from gradient cine magnetic resonance imaging sequences. Am J Cardiol 105:1465–1469

    Article  PubMed  Google Scholar 

  20. Ortega M, Triedman JK, Geva T, Harrild DM (2011) Relation of left ventricular dyssynchrony measured by cardiac magnetic resonance tissue tracking in repaired tetralogy of fallot to ventricular tachycardia and death. Am J Cardiol 107:1535–1540

    Article  PubMed  Google Scholar 

  21. Kutty S, Rangamani S, Venkataraman J, Li L, Schuster A, Fletcher SE et al (2013) Reduced global longitudinal and radial strain with normal left ventricular ejection fraction late after effective repair of aortic coarctation: a CMR feature tracking study. Int J Cardiovasc Imaging 29:141–150

    Article  PubMed  Google Scholar 

  22. Christensen JT, Lu JC, Donohue J, Yu S, Mahani MG, Agarwal PP et al (2014) Relation of aortic stiffness and strain by cardiovascular magnetic resonance imaging to age in repaired tetralogy of fallot. Am J Cardiol 113:1031–1035

    Article  PubMed  Google Scholar 

  23. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  24. Therrien J, Thorne SA, Wright A, Kilner PJ, Somerville J (2000) Repaired coarctation: a “cost-effective” approach to identify complications in adults. J Am Coll Cardiol 35:997–1002

    Article  CAS  PubMed  Google Scholar 

  25. Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD (2010) Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J 31:794–805

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schuster A, Morton G, Hussain ST, Jogiya R, Kutty S, Asress KN et al (2013) The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength. Eur J Radiol 82:296–301

    Article  PubMed  Google Scholar 

  27. Iwahashi N, Nakatani S, Kanzaki H, Hasegawa T, Abe H, Kitakaze M (2006) Acute improvement in myocardial function assessed by myocardial strain and strain rate after aortic valve replacement for aortic stenosis. J Am Soc Echocardiogr 19:1238–1244

    Article  PubMed  Google Scholar 

  28. Poulsen SH, Sogaard P, Nielsen-Kudsk JE, Egeblad H (2007) Recovery of left ventricular systolic longitudinal strain after valve replacement in aortic stenosis and relation to natriuretic peptides. J Am Soc Echocardiogr 20:877–884

    Article  PubMed  Google Scholar 

  29. Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2:356–364

    Article  PubMed  Google Scholar 

  30. Ersboll M, Valeur N, Mogensen UM, Andersen MJ, Moller JE, Velazquez EJ et al (2013) Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol 61:2365–2373

    Article  PubMed  Google Scholar 

  31. De Divitiis M, Rubba P, Calabro R (2005) Arterial hypertension and cardiovascular prognosis after successful repair of aortic coarctation: a clinical model for the study of vascular function. Nutr Metab Cardiovasc Dis 15:382–394

    Article  PubMed  Google Scholar 

  32. Shim CY, Park S, Choi EY, Hong GR, Choi D, Jang Y et al (2013) The relationship between ventricular-vascular uncoupling during exercise and impaired left ventricular longitudinal functional reserve in hypertensive patients. J Am Soc Hypertens 7:198–205

    Article  PubMed  Google Scholar 

  33. Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP et al (2007) Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol 50:1570–1577

    Article  PubMed  Google Scholar 

  34. Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert DD et al (2012) Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Reson 14:77

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hickson SS, Butlin M, Graves M, Taviani V, Avolio AP, McEniery CM et al (2010) The relationship of age with regional aortic stiffness and diameter. JACC Cardiovasc Imaging 3:1247–1255

    Article  PubMed  Google Scholar 

  36. Redheuil A, Yu WC, Wu CO, Mousseaux E, de Cesare A, Yan R et al (2010) Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension 55:319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327

    Article  PubMed  Google Scholar 

  38. Di Salvo G, Pacileo G, Limongelli G, Verrengia M, Rea A, Santoro G et al (2007) Abnormal regional myocardial deformation properties and increased aortic stiffness in normotensive patients with aortic coarctation despite successful correction: an ABPM, standard echocardiography and strain rate imaging study. Clin Sci (Lond) 113:259–266

    Article  Google Scholar 

  39. Redheuil A, Yu WC, Mousseaux E, Harouni AA, Kachenoura N, Wu CO et al (2011) Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol 58:1262–1270

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dinh W, Nickl W, Smettan J, Kramer F, Krahn T, Scheffold T et al (2010) Reduced global longitudinal strain in association to increased left ventricular mass in patients with aortic valve stenosis and normal ejection fraction: a hybrid study combining echocardiography and magnetic resonance imaging. Cardiovasc Ultrasound 8:29

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lumens J, Prinzen FW, Delhaas T (2015) Longitudinal strain: “think globally, track locally’. JACC Cardiovasc Imaging 8:1360–1363

    Article  PubMed  Google Scholar 

  42. Kenny D, Polson JW, Martin RP, Caputo M, Wilson DG, Cockcroft JR et al (2011) Relationship of aortic pulse wave velocity and baroreceptor reflex sensitivity to blood pressure control in patients with repaired coarctation of the aorta. Am Heart J 162:398–404

    Article  PubMed  Google Scholar 

  43. Ross RD, Clapp SK, Gunther S (1992) Augmented norepinephrine and renin output in response to maximal exercise in hypertensive coarctectomy patients. Am Heart J 124:1293–1299

    Article  Google Scholar 

  44. Simsolo R, Grunfeld B, Gimenez M (1988) Long-term systolic hypertension in children after successful repair of coarctation of the aorta. Am Heart J 115:1268–1273

    Article  CAS  PubMed  Google Scholar 

  45. Vitarelli A, Conde Y, Cimino E, D’Orazio S, Stellato S, Battaglia D et al (2008) Assessment of ascending aorta distensibility after successful coarctation repair by strain Doppler echocardiography. J Am Soc Echocardiogr 21:729–736

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the assistance of the Magnetic Resonance Imaging Laboratory staff at the Children’s Hospital and Medical Center. We also thank Berthold Klas, BS, TomTec Imaging Systems, TomTec Corporation USA for technical assistance.

The scientific guarantor of this publication is Shelby Kutty. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. Shelby Kutty has received support from the American Heart Association and Children’s Hospital and Medical Center Foundation. David Danford kindly provided statistical advice for this manuscript. Institutional review board approval was obtained. Written consent was waived because this was a retrospective study. Approval from the institutional animal care committee was not required because this is a human study. None of the study subjects or cohorts have been previously reported. Methodology: retrospective, case-control study, multicentre study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelby Kutty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Q., Sarikouch, S., Patel, S. et al. Assessment of ventriculo-vascular properties in repaired coarctation using cardiac magnetic resonance-derived aortic, left atrial and left ventricular strain. Eur Radiol 27, 167–177 (2017). https://doi.org/10.1007/s00330-016-4373-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4373-8

Keywords

Navigation