Skip to main content
Log in

Feasibility of three-dimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate the feasibility of ultrashort echo time (UTE) magnetic resonance imaging (MRI) for the diagnosis of skull fractures.

Methods

The skull fracture models of ten Bama pigs and 364 patients with craniocerebral trauma were subjected to computed tomography (CT), UTE and conventional MRI sequences. The accuracy of UTE imaging in skull fracture diagnosis was analysed using receiver operating characteristic (ROC) curve analysis, McNemar’s test and Kappa values. Differences among CT, UTE imaging and anatomical measurement (AM) values for linear fractures (LFs) and depressed fractures (DFs) were compared using one-way ANOVA and a paired-samples t-test.

Results

UTE imaging clearly demonstrated skull structures and fractures. The accuracy, validity and reliability of UTE MRI were excellent, with no significant differences between expert readings (P > 0.05; Kappa, 0.899). The values obtained for 42 LFs and 13 DFs in the ten specimens were not significantly different among CT, UTE MRI and AMs, while those obtained for 55 LFs and ten DFs in 44 patients were not significantly different between CT and UTE MRI (P > 0.05).

Conclusions

UTE MRI sequences are feasible for the evaluation of skull structures and fractures, with no radiation exposure, particularly for paediatric and pregnant patients.

Key Points

Despite ionising radiation, CT is standard for skull fracture assessment.

Conventional MRI cannot depict skull structures.

3D-UTE sequences clearly demonstrate skull structures and fractures.

UTE plus conventional MRI are superior to CT in craniocerebral trauma assessment.

Paediatric and pregnant patients will benefit from this imaging modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AM:

Anatomical measurement

AUC:

Area under the curve

CF:

Comminuted fracture

CT:

Computed tomography

CPR:

Curved planar reconstruction

DF:

Depressed fracture

ET:

Echo time

LF:

Linear fracture

MRI:

Magnetic resonance imaging

OML:

Orbitomeatal line

ROC:

Receiver operating characteristic

SNR:

Signal/noise ratio

3D-SSD:

Three-dimensional surface shaded display

3D-UTE:

Three-dimensional ultrashort echo time

References

  1. Schmidt CW (2012) CT scans: balancing health risks and medical benefits. Environ Health Perspect 120:A118–A121

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hall EJ, Brenner DJ (2012) Cancer risks from diagnostic radiology: the impact of new epidemiological data. Br J Radiol 85:e1316–e1317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Nievelstein RA, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344

    Article  PubMed Central  PubMed  Google Scholar 

  4. Frush DP (2011) CT dose and risk estimates in children. Pediatr Radiol 41:483–487

    Article  PubMed  Google Scholar 

  5. McCollough CH, Schueler BA, Atwell TD, Braun NN, Regner DM, Brown DL et al (2010) Radiation exposure and pregnancy: when should we be concerned? Radiographics 27:909–917

    Article  Google Scholar 

  6. Yamashita K, Yoshiura T, Hiwatashi A, Kamano H, Honda H (2012) Ultrashort echo time imaging of normal middle ear ossicles: a feasibility study. Dentomaxillofac Radiol 41:601–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27:825–846

    Article  PubMed  Google Scholar 

  8. Bae WC, Du J, Bydder GM, Chung CB (2010) Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Top Magn Reson Imaging 21:275–289

    Article  PubMed Central  PubMed  Google Scholar 

  9. Du J, Bydder M, Takahashi AM, Carl M, Chung CB, Bydder GM (2011) Short T2 contrast with three-dimensional ultrashort echo time imaging. Magn Reson Imaging 29:470–482

    Article  PubMed Central  PubMed  Google Scholar 

  10. Fernandez-Seara MA, Wehrli SL, Wehrli FW (2003) Multipoint mapping for imaging of semi-solid materials. J Magn Reson 160:144–150

    Article  CAS  PubMed  Google Scholar 

  11. Cao H, Ackerman JL, Hrovat MI, Graham L, Glimcher MJ, Wu Y (2008) Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms. Magn Reson Med 60:1433–1443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gatehouse PD, Bydder GM (2003) Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 58:1–19

    Article  CAS  PubMed  Google Scholar 

  13. Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179:777–781

    Article  CAS  PubMed  Google Scholar 

  14. Bergin CJ, Noll DC, Pauly JM, Glover GH, Macovski A (1992) MR imaging of lung parenchyma: a solution to susceptibility. Radiology 183:673–676

    Article  CAS  PubMed  Google Scholar 

  15. Gold GE, Pauly JM, Macovski A, Herfkens RJ (1995) MR spectroscopic imaging of collagen: tendons and knee menisci. Magn Reson Med 34:647–654

    Article  CAS  PubMed  Google Scholar 

  16. Reichert IL, Robson MD, Gatehouse PD et al (2005) Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 23:611–618

    Article  PubMed  Google Scholar 

  17. Gao S, Du J, Wang F, Bao S (2013) Magnetic resonance ultrashort echo time spin-echo imaging of the deepest layers of articular cartilage. Sci China Life Sci 56:672–674

    Article  PubMed  Google Scholar 

  18. Du J, Hamilton G, Takahashi A, Bydder M, Chung CB (2007) Ultrashort echo time spectroscopic imaging (UTESI) of cortical bone. Magn Reson Med 58:1001–1009

    Article  PubMed  Google Scholar 

  19. Rahmer J, Blume U, Bornert P (2007) Selective 3D ultrashort TE imaging: comparison of “dual-echo” acquisition and magnetization preparation for improving short-T 2 contrast. MAGMA 20:83–92

    Article  PubMed  Google Scholar 

  20. Ma L, Meng Q, Chen Y, Zhang Z, Sun H, Deng D (2013) Preliminary use of a double-echo pulse sequence with 3D ultrashort echo time in the MRI of bones and joints. Exp Ther Med 5:1471–1475

    PubMed Central  PubMed  Google Scholar 

  21. Omoumi P, Bae WC, Du J et al (2012) Meniscal calcifications: morphologic and quantitative evaluation by using 2D inversion-recovery ultrashort echo time and 3D ultrashort echo time 3.0-T MR imaging techniques: feasibility study. Radiology 264:260–268

    Article  PubMed Central  PubMed  Google Scholar 

  22. Bae WC, Dwek JR, Znamirowski R et al (2010) Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology 254:837–845

    Article  PubMed Central  PubMed  Google Scholar 

  23. Dikkers R, Willems TP, Piers LH et al (2008) Coronary revascularization treatment based on dual-source computed tomography. Eur Radiol 18:1800–1808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Eley KA, Sheerin F, Taylor N, Watt-Smith SR, Golding SJ (2013) Identification of normal cranial sutures in infants on routine magnetic resonance imaging. J Craniofac Surg 24:317–320

    Article  PubMed  Google Scholar 

  25. Eley KA, Watt-Smith SR, Sheerin F, Golding SJ (2014) “Black Bone” MRI: a potential alternative to CT with three-dimensional reconstruction of the craniofacial skeleton in the diagnosis of craniosynostosis. Eur Radiol 24:2417–2426

    Article  PubMed  Google Scholar 

  26. Du J (2012) Qualitative and quantitative ultrashort echo time (UTE) MRI of cortical bone. Proc Int Soc Magn Reson Med 20:1–13

    Google Scholar 

  27. Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM (2007) Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson Imaging 25:279–289

    Article  PubMed  Google Scholar 

  28. Robson MD, Bydder GM (2006) Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed 19:765–780

    Article  PubMed  Google Scholar 

  29. Bae WC, Chen PC, Chung CB, Masuda K, D'Lima D, Du J (2012) Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res 27:848–857

    Article  PubMed Central  PubMed  Google Scholar 

  30. Biswas R, Bae W, Diaz E et al (2012) Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone 50:749–755

    Article  PubMed Central  PubMed  Google Scholar 

  31. Techawiboonwong A, Song HK, Leonard MB, Wehrli FW (2008) Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology 248:824–833

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rad HS, Lam SC, Magland JF et al (2011) Quantifying cortical bone water in vivo by three-dimensional ultra-short echo-time MRI. NMR Biomed 24:855–864

    Article  PubMed Central  PubMed  Google Scholar 

  33. Geiger D, Bae WC, Statum S, Du J, Chung CB (2014) Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (muCT) evaluation of the temporomandibular joint (TMJ) condylar morphology. Skelet Radiol 43:19–25

    Article  Google Scholar 

  34. Du J, Hermida JC, Diaz E et al (2012) Assessment of cortical bone with clinical and ultrashort echo time sequences. Magn Reson Med. doi:10.1002/mrm.24497

    Google Scholar 

  35. Kim DS, Kong MH, Jang SY et al (2013) The usefulness of brain magnetic resonance imaging with mild head injury and the negative findings of brain computed tomography. J Korean Neurosurg Soc 54:100–106

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Ming Zhu as the scientific guarantor, and Dr. Huihong Pan, Dr. Jinglei Wang and Dr. Hongliang Zhang for their technical support, Dr. Jin Lan for his thoughtful comments, and Dr. Baisong Wang and Xiaoling Zhang for their statistical advice. We also thank Prof. Yongming Qiu, Dr. Jianwei Ge, Dr. Yunhai Song and Dr. Bo Yang for their help in collecting clinical materials. The authors state that this work has not received any funding.

No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Approval from the institutional animal care committee was obtained. Methodology: prospective, case-control study/diagnostic study, multicentre study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-min Zhong or Quan-min Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhong, Ym., Nie, Qm. et al. Feasibility of three-dimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures. Eur Radiol 26, 138–146 (2016). https://doi.org/10.1007/s00330-015-3804-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3804-2

Keywords

Navigation