Skip to main content

Median nerve stiffness measurement by shear wave elastography: a potential sonographic method in the diagnosis of carpal tunnel syndrome

Abstract

Objectives

To measure the median nerve (MN) stiffness by quantitative shear wave elastography (SWE) at the carpal tunnel inlet and to determine whether SWE can be used in the diagnosis of carpal tunnel syndrome (CTS).

Methods

The study included 37 consecutive patients (60 wrists) with a definitive diagnosis of CTS and 18 healthy volunteers (36 wrists). The MN cross-sectional area (CSA) by ultrasound and stiffness by SWE were studied. The difference between CTS patients and controls, and the difference among subgroups based on electrodiagnostic tests were studied by the Student’s t test. Interobserver variability and ROC analysis were performed.

Results

The MN stiffness was significantly higher in the CTS group (66.7 kPa) when compared to controls (32.0 kPa) (P < 0.001), and higher in the severe or extreme severity group (101.4 kPa) than the mild or moderate severity group (55.1 kPa) (P < 0.001). A 40.4-kPa cut-off value on SWE revealed sensitivity, specificity, PPV, NPV and accuracy of 93.3 %, 88.9 %, 93.3 %, 88.9 % and 91.7 %, respectively. Interobserver agreement was excellent for SWE measurements.

Conclusions

Median nerve stiffness at the carpal tunnel inlet is significantly higher in patients with carpal tunnel syndrome, for whom shear wave elastography appears to be a highly reproducible diagnostic technique.

Key Points

• Clinical examination is important for diagnosis of carpal tunnel syndrome

• Shear wave elastography (SWE) offers new clinical opportunities within diagnostic ultrasound

• SWE is highly reproducible in evaluation of median nerve stiffness

• Median nerve stiffness is significantly increased in carpal tunnel syndrome

• Elastography could become useful in diagnosis of carpal tunnel syndrome

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CSA:

Cross-sectional area

CTS:

Carpal tunnel syndrome

EDT:

Electrodiagnostic testing

MN:

Median nerve

ROC:

Receiver operator characteristic

ROI:

Region of interest

SWE:

Shear wave elastography

References

  1. 1.

    American Academy of Neurology, American Association of Electrodiagnostic Medicine, American Academy of Physical Medicine and Rehabilitation (1993) Practice parameter for electrodiagnostic studies in carpal tunnel syndrome (summary statement). Neurology 43:2404–2405

    Article  Google Scholar 

  2. 2.

    Rempel D, Evanoff B, Amadio PC et al (1998) Consensus criteria for the classification of carpal tunnel syndrome in epidemiologic studies. Am J Public Health 88:1447–1451

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Graham B (2008) The value added by electrodiagnostic testing in the diagnosis of carpal tunnel syndrome. J Bone Joint Surg Am 90:2587–2593

    PubMed  Google Scholar 

  4. 4.

    Koyuncuoglu HR, Kutluhan S, Yesildag A, Oyar O, Guler K, Ozden A (2005) The value of ultrasonographic measurement in carpal tunnel syndrome in patients with negative electrodiagnostic tests. Eur J Radiol 56:365–369

    PubMed  Article  Google Scholar 

  5. 5.

    Witt JC, Hentz JG, Stevens JC (2004) Carpal tunnel syndrome with normal nerve conduction studies. Muscle Nerve 29:515–522

    PubMed  Article  Google Scholar 

  6. 6.

    Andreisek G, Crook DW, Burg D, Marincek B, Weishaupt D (2006) Peripheral neuropathies of the median, radial, and ulnar nerves: MR imaging features. Radiographics 26:1267–1287

    PubMed  Article  Google Scholar 

  7. 7.

    Barcelo C, Faruch M, Lapègue F, Bayol MA, Sans N (2013) 3-T MRI with diffusion tensor imaging and tractography of the median nerve. Eur Radiol. doi:10.1007/s00330-013-2955-2

    PubMed  Google Scholar 

  8. 8.

    Hiltunen J, Kirveskari E, Numminen J, Lindfors N, Göransson H, Hari R (2012) Pre- and post-operative diffusion tensor imaging of the median nerve in carpal tunnel syndrome. Eur Radiol 22:1310–1319

    PubMed  Article  Google Scholar 

  9. 9.

    Taşdelen N, Gürses B, Kiliçkesmez Ö, Firat Z, Karlikaya G, Tercan M, Uluğ AM, Gürmen AN (2012) Diffusion tensor imaging in carpal tunnel syndrome. Diagn Interv Radiol 18:60–66

    PubMed  Google Scholar 

  10. 10.

    Nakamichi KI, Tachibana S (2000) Enlarged median nerve in idiopathic carpal tunnel syndrome. Muscle Nerve 23:1713–1718

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    El Miedany YM, Aty SA, Ashour S (2004) Ultrasonography versus nerve conduction study in patients with carpal tunnel syndrome: substantive or complementary tests? Rheumatology (Oxford) 43:887–895

    Article  Google Scholar 

  12. 12.

    Wong SM, Griffith JF, Hui AC, Lo SK, Fu M, Wong KS (2004) Carpal tunnel syndrome: diagnostic usefulness of sonography. Radiology 232:93–99

    PubMed  Article  Google Scholar 

  13. 13.

    Pastare D, Therimadasamy AK, Lee E, Wilder-Smith EP (2009) Sonography versus nerve conduction studies in patients referred with a clinical diagnosis of carpal tunnel syndrome. J Clin Ultrasound 37:389–393

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Sarría L, Cabada T, Cozcolluela R, Martínez-Berganza T, García S (2000) Carpal tunnel syndrome: usefulness of sonography. Eur Radiol 10:1920–1925

    PubMed  Article  Google Scholar 

  15. 15.

    Lee D, van Holsbeeck MT, Janevski PK, Ganos DL, Ditmars DM, Darian VB (1999) Diagnosis of carpal tunnel syndrome: ultrasound versus electromyography. Radiol Clin North Am 37:859–872

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Wells PN, Liang HD (2011) Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 8:1521–1549

    PubMed Central  PubMed  Article  Google Scholar 

  17. 17.

    Sconfienza LM, Silvestri E, Cimmino MA (2010) Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes. Clin Exp Rheumatol 28:373–378

    PubMed  Google Scholar 

  18. 18.

    Wu CH, Chang KV, Mio S, Chen WS, Wang TG (2011) Sonoelastography of the plantar fascia. Radiology 259:502–507

    PubMed  Article  Google Scholar 

  19. 19.

    Botanlioglu H, Kantarci F, Kaynak G et al (2013) Shear wave elastography properties of vastus lateralis and vastus medialis obliquus muscles in normal subjects and female patients with patellofemoral pain syndrome. Skeletal Radiol 42:659–666

    PubMed  Article  Google Scholar 

  20. 20.

    Orman G, Ozben S, Huseyinoglu N, Duymus M, Orman KG (2013) Ultrasound elastographic evaluation in the diagnosis of carpal tunnel syndrome: initial findings. Ultrasound Med Biol 39:1184–1189

    PubMed  Article  Google Scholar 

  21. 21.

    Park GY, Kim SK, Park JH (2011) Median nerve injury after carpal tunnel injection serially followed by ultrasonographic, sonoelastographic, and electrodiagnostic studies. Am J Phys Med Rehabil 90:336–341

    PubMed  Article  Google Scholar 

  22. 22.

    Padua L, Padua R, Lo Monaco M, Romanini E, Tonali P, Italian CTS Study Group (1998) Italian multicentric study of carpal tunnel syndrome: study design. Ital J Neurol Sci 19:285–289

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Padua L, Padua R, Lo Monaco M, Aprile I, Tonali P (1999) Multiperspective assessment of carpal tunnel syndrome: a multicenter study. Neurology 53:1654–1659

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    American Association of Electrodiagnostic Medicine, American Academy of Neurology, American Academy of Physical Medicine and Rehabilitation (1993) Practice parameter for electrodiagnostic studies in carpal tunnel syndrome: summary statement. Muscle Nerve 16:1390–1391

    Article  Google Scholar 

  25. 25.

    Padua L, Lo Monaco M, Gregori B, Valente EM, Padua R, Tonali P (1997) Neurophysiological classification and sensitivity in 500 carpal tunnel syndrome hands. Acta Neurol Scand 96:211–217

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Buchberger W (1997) Radiologic imaging of the carpal tunnel. Eur J Radiol 25:112–117

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Martinoli C, Bianchi S, Gandolfo N, Valle M, Simonetti S, Derchi LE (2000) US of nerve entrapments in osteofibrous tunnels of the upper and lower limbs. Radiographics 20:S199–S213

    PubMed  Article  Google Scholar 

  28. 28.

    Coppieters MW, Schmid AB, Kubler PA, Hodges PW (2012) Description, reliability and validity of a novel method to measure carpal tunnel pressure in patients with carpal tunnel syndrome. Man Ther 17:589–592

    PubMed  Article  Google Scholar 

  29. 29.

    Murata K, Yajima H, Maegawa N, Hattori K, Takakura Y (2007) Investigation of segmental carpal tunnel pressure in patients with idiopathic carpal tunnel syndrome–is it necessary to release the distal aponeurotic portion of the flexor retinaculum in endoscopic carpal tunnel release surgery? Hand Surg 12:205–209

    PubMed  Article  Google Scholar 

  30. 30.

    Wang Y, Qiang B, Zhang X et al (2012) A non-invasive technique for estimating carpal tunnel pressure by measuring shear wave speed in tendon: a feasibility study. J Biomech 45:2927–2930

    PubMed  Article  Google Scholar 

  31. 31.

    Rempel D, Dahlin L, Lundborg G (1999) Pathophysiology of nerve compression syndromes: response of peripheral nerves to loading. J Bone Joint Surg Am 81:1600–1610

    CAS  PubMed  Google Scholar 

  32. 32.

    Hamanaka I, Okutsu I, Shimizu K, Takatori Y, Ninomiya S (1995) Evaluation of carpal canal pressure in carpal tunnel syndrome. J Hand Surg [Am] 20:848–854

    CAS  Article  Google Scholar 

  33. 33.

    Luchetti R, Schoenhuber R, Alfarano M, Deluca S, De Cicco G, Landi A (1990) Carpal tunnel syndrome: correlations between pressure measurement and intraoperative electrophysiological nerve study. Muscle Nerve 13:1164–1168

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Chan L, Turner JA, Comstock BA et al (2007) The relationship between electrodiagnostic findings and patient symptoms and function in carpal tunnel syndrome. Arch Phys Med Rehabil 88:19–24

    PubMed  Article  Google Scholar 

  35. 35.

    Kang S, Kwon HK, Kim KH, Yun HS (2012) Ultrasonography of median nerve and electrophysiologic severity in carpal tunnel syndrome. Ann Rehabil Med 36:72–79

    PubMed Central  PubMed  Article  Google Scholar 

  36. 36.

    Zyluk A, Walaszek I, Szlosser Z (2013) No correlation between sonographic and electrophysiological parameters in carpal tunnel syndrome. J Hand Surg Eur. doi:10.1177/1753193413489046

    Google Scholar 

  37. 37.

    Gennisson JL, Deffieux T, Macé E, Montaldo G, Fink M, Tanter M (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36:789–801

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fatih Kantarci.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kantarci, F., Ustabasioglu, F.E., Delil, S. et al. Median nerve stiffness measurement by shear wave elastography: a potential sonographic method in the diagnosis of carpal tunnel syndrome. Eur Radiol 24, 434–440 (2014). https://doi.org/10.1007/s00330-013-3023-7

Download citation

Keywords

  • Carpal tunnel syndrome
  • Median nerve
  • Ultrasonography
  • Elastography
  • Median neuropathy