Skip to main content
Log in

3D mapping of cerebrospinal fluid local volume changes in patients with hydrocephalus treated by surgery: preliminary study

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To develop automated deformation modelling for the assessment of cerebrospinal fluid (CSF) local volume changes in patients with hydrocephalus treated by surgery.

Methods

Ventricular and subarachnoid CSF volume changes were mapped by calculating the Jacobian determinant of the deformation fields obtained after non-linear registration of pre- and postoperative images. A total of 31 consecutive patients, 15 with communicating hydrocephalus (CH) and 16 with non-communicating hydrocephalus (NCH), were investigated before and after surgery using a 3D SPACE (sampling perfection with application optimised contrast using different flip-angle evolution) sequence. Two readers assessed CSF volume changes using 3D colour-encoded maps. The Evans index and postoperative volume changes of the lateral ventricles and sylvian fissures were quantified and statistically compared.

Results

Before surgery, sylvian fissure and brain ventricle volume differed significantly between CH and NCH (P = 0.001 and P = 0.025, respectively). After surgery, 3D colour-encoded maps allowed for the visual recognition of the CSF volume changes in all patients. The amounts of ventricle volume loss of CH and NCH patients were not significantly different (P = 0.30), whereas readjustment of the sylvian fissure volume was conflicting in CH and NCH patients (P < 0.001). The Evans index correlated with ventricle volume in NCH patients.

Conclusion

3D mapping of CSF volume changes is feasible providing a quantitative follow-up of patients with hydrocephalus.

Key Points

MRI can provide helpful information about cerebrospinal fluid volumes.

3D CSF mapping allows quantitative follow-up in communicating and non-communicating hydrocephalus.

Following intervention, fissures and cisterns readjust in both forms of hydrocephalus.

These findings support the hypothesis of suprasylvian block in communicating hydrocephalus.

3D mapping may improve shunt dysfunction detection and guide valve pressure settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CH:

communicating hydrocephalus

CSF:

cerebrospinal fluid

ETV:

endoscopic third ventriculostomy

NCH:

non-communicating hydrocephalus

SPACE:

sampling perfection with application optimised contrast using different flip-angle evolution

References

  1. Anderson RC, Grant JJ, de la Paz R et al (2002) Volumetric measurements in the detection of reduced ventricular volume in patients with normal-pressure hydrocephalus whose clinical condition improved after ventriculoperitoneal shunt placement. J Neurosurg 97:73–79

    Article  PubMed  Google Scholar 

  2. McConnell KA, Zou KH, Chabrerie AV et al (2004) Decreases in ventricular volume correlate with decreases in ventricular pressure in idiopathic normal pressure hydrocephalus patients who experienced clinical improvement after implantation with adjustable valve shunts. Neurosurgery 55:582–592

    Article  PubMed Central  PubMed  Google Scholar 

  3. Buxton N, Turner B, Ramli N et al (2002) Changes in third ventricular size with neuroendoscopic third ventriculostomy: a blinded study. J Neurol Neurosurg Psychiatry 72:385–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kulkarni AV, Drake JM, Armstrong DC et al (2000) Imaging correlates of successful endoscopic third ventriculostomy. J Neurosurg 92:915–919

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz TH, Ho B, Prestigiacomo CJ et al (1999) Ventricular volume following third ventriculostomy. J Neurosurg 91:20–25

    Article  CAS  PubMed  Google Scholar 

  6. St George E, Natarajan K, Sgouros S (2004) Changes in ventricular volume in hydrocephalic children following successful endoscopic third ventriculostomy. Child’s nervous system. ChNS 20:834–838

    PubMed  Google Scholar 

  7. Chetelat G, Landeau B, Eustache F et al (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage 27:934–946

    Article  CAS  PubMed  Google Scholar 

  8. Fox NC, Crum WR, Scahill RI et al (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358:201–205

    Article  CAS  PubMed  Google Scholar 

  9. Janke AL, de Zubicaray G, Rose SE et al (2001) 4D deformation modeling of cortical disease progression in Alzheimer’s dementia. Magn Reson Med 46:661–666

    Article  CAS  PubMed  Google Scholar 

  10. Thompson PM, Hayashi KM, de Zubicaray G et al (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23:994–1005

    CAS  PubMed  Google Scholar 

  11. Hodel J, Silvera J, Bekaert O et al (2011) Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution. Eur Radiol 21:402–410

    Article  PubMed  Google Scholar 

  12. Relkin N, Marmarou A, Klinge P et al (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57:4–16

    Google Scholar 

  13. Lemieux L, Hammers A, Mackinnon T et al (2003) Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry. Magn Reson Med 49:872–884

    Article  PubMed  Google Scholar 

  14. Fonov V, Evans AC, Botteron K et al (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54:313–327

    Article  PubMed Central  PubMed  Google Scholar 

  15. Boyes RG, Rueckert D, Aljabar P et al (2006) Cerebral atrophy measurements using Jacobian integration: comparison with the boundary shift integral. NeuroImage 32:159–169

    Article  PubMed  Google Scholar 

  16. Rekate HL, Nadkarni TD, Wallace D (2008) The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg Pediatr 2:1–11

    Article  PubMed  Google Scholar 

  17. Kitagaki H, Mori E, Ishii K et al (1998) CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 19:1277–1284

    CAS  PubMed  Google Scholar 

  18. Tsunoda A, Mitsuoka H, Sato K et al (2000) A quantitative index of intracranial cerebrospinal fluid distribution in normal pressure hydrocephalus using an MRI-based processing technique. Neuroradiology 42:424–429

    Article  CAS  PubMed  Google Scholar 

  19. Bellotti A, Rapana A, Iaccarino C et al (2001) Intracranial pressure monitoring after endoscopic third ventriculostomy: an effective method to manage the ‘adaptation period’. Clin Neurol Neurosurg 103:223–227

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Hodel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodel, J., Besson, P., Rahmouni, A. et al. 3D mapping of cerebrospinal fluid local volume changes in patients with hydrocephalus treated by surgery: preliminary study. Eur Radiol 24, 136–142 (2014). https://doi.org/10.1007/s00330-013-2990-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2990-z

Keywords

Navigation