Skip to main content

Advertisement

Log in

Short-term dynamics of nutrients, planktonic abundances, and microbial respiratory activity in the Arctic Kongsfjorden (Svalbard, Norway)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Atlantification of Arctic ocean is causing a sharp increase in temperature and salinity around Svalbard Islands and in Kongsfjorden. Such phenomenon and the input of sediment-rich glacial meltwater influence salinity, water column turbidity, and light penetration with ecological implications on the microbial features. With the aim to address the temporal variability of the microbial assemblage in relation to environmental variables, a 7-day study was carried out in Kongsfjorden, in late summer 2013. Abiotic (temperature, salinity, nutrients, total suspended matter, particulate inorganic, and organic carbon) and biotic (phyto -, picophyto-, bacterio-, and virioplankton abundance and microbial respiration) parameters were investigated at a station in the inner fjord area, ca. 8.5 km away from the glacier front. Phyto-, picophyto-, and virioplankton showed low abundance. Dinoflagellates and coccolithophorids dominated the phytoplankton community while Synechococcus sp. the picophytoplankton alone, in relation with Atlantic water. Low virus to bacteria ratios were detected, presumably linked to the high sedimentation rates. Interesting variability for picophytoplankton with depth, virioplankton with both time and depth, and respiratory rates with time were found. Moreover, the organic matter turnover was slower on the first sampling day compared to that of the following days. Planktonic abundance depended on the variability of both hydrology (seawater mass inflow) and freshwater runoff from the glacier (relative turbidity degree). Differently, the metabolic rates of respiration appeared to be linked with the particulate carbon pool. Over 1-week study, the diverse microbial dynamics appeared to be conditioned on complex forcing, emphasizing the importance of high-resolution experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Material described in the manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes.

References

  • Aliani S, Bartholini G, Degl’Innocenti F, Delfanti R, Galli C, Lazzoni E, Lorenzelli R, Malaguti A, Meloni R, Papucci C, Salvi S, Zaborska A (2004) Multidisciplinary investigations in the marine environment of the inner Kongsfjord, Svalbard Islands (September 2000 and 2001). Chem Ecol 20:19–28

    Google Scholar 

  • Amiel D, Cochran JK, Hirschberg DJ (2002) 234Th/238U disequilibrium as an indicator of the seasonal export flux of particulate organic carbon in the North Water. Deep Sea Res II 49:5191–5209

    CAS  Google Scholar 

  • Aminot A, Chaussepied M (1983) Manuel des analyses chimiques en milieu marin. CNEXO, Editions Jouvre, Paris, p 395

    Google Scholar 

  • Armitage TWK, Manucharyan GE, Petty AA, Kwok R, Thompson AF (2020) Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss. Nat Comm. https://doi.org/10.1038/s41467-020-14449-z

    Article  Google Scholar 

  • Asbjørnsen H, Arthun M, Skagseth Ø, Eldevik T (2020) Mechanisms underlying recent Arctic Atlantification. Geophys Res Lett. https://doi.org/10.1029/2020GL088036

    Article  Google Scholar 

  • Azzaro M, La Ferla R, Azzaro F (2006) Microbial respiration in the aphotic zone of the Ross Sea (Antarctica). Mar Chem 99:199–209

    CAS  Google Scholar 

  • Azzaro M, La Ferla R, Maimone G, Monticelli LS, Zaccone R, Civitarese G (2012) Prokaryotic dynamics and heterotrophic metabolism in a deep convection site of Eastern Mediterranean Sea (the Southern Adriatic Pit). Cont Shelf Res 44:106–118

    Google Scholar 

  • Azzaro M, Packard TT, Monticelli LS, Maimone G, Rappazzo AC, Azzaro F, Grilli F, Crisafi E, La Ferla R (2019) Microbial metabolic rates in the Ross Sea: the ABIOCLEAR Project. Nat Conserv 34:441–475

    Google Scholar 

  • Bogen J, Xu M, Kennie P (2014) The impact of pro-glacial lakes on downstream sediment delivery in Norway. Earth Surf Process Landf. https://doi.org/10.1002/esp.3669

    Article  Google Scholar 

  • Brussaard CPD (2004a) Viral control of phytoplankton population—a review. J Eukaryot Microbiol 51:125–138

    PubMed  Google Scholar 

  • Brussaard CPD (2004b) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70:1506–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cantoni C, Hopwood MJ, Clarke JS, Chiggiato J, Achterberg EP, Cozzi S (2020) Glacial drivers of marine biogeochemistry indicate a future shift to more corrosive conditions in an Arctic fjord. J Geophys Res Biogeosci. https://doi.org/10.1029/2020JG005633

    Article  Google Scholar 

  • Caroppo C, Pagliara P, Azzaro F, Miserocchi S, Azzaro M (2017) Late summer phytoplankton blooms in the changing polar environment of the Kongsfjorden (Svalbard, Arctic). Cryptogam Algol 38:53–72

    Google Scholar 

  • Caruso G, Madonia A, Bonamano S, Miserocchi S, Giglio F, Maimone G, Azzaro F, Decembrini F, La Ferla R, Piermattei V, Piazzolla D, Marcelli M, Azzaro M (2020) Microbial abundance and enzyme activity patterns: response to changing environmental characteristics along a transect inKongsfjorden (Svalbard Islands). J Mar Sci Eng. https://doi.org/10.3390/jmse8100824

    Article  Google Scholar 

  • Cisek M, Makuch P, Petelski T (2017) Comparison of meteorological conditions in Svalbard fjords: Hornsund and Kongsfjorden. Oceanologia 59:413–421

    Google Scholar 

  • Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffith C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys. https://doi.org/10.1029/2004JC002757

    Article  Google Scholar 

  • Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett. https://doi.org/10.1029/2007GL029948

    Article  Google Scholar 

  • Crisafi E, Azzaro M, Lo Giudice A, Michaud L, La Ferla R, Maugeri TL, De Domenico M, Azzaro F, Acosta Pomar MLC, Bruni V (2010) Microbiological characterization of a semi-enclosed sub-Antarctic environment: the Strait of Magellan. Polar Biol 33:1485–1504

    Google Scholar 

  • Dai A, Luo D, Song M, Liu J (2019) Arctic amplification is caused by sea-ice loss under increasing CO2. Nat Commun. https://doi.org/10.1038/s41467-018-07954-9

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Angelo A, Giglio F, Miserocchi S, Sanchez-Vidal A, Aliani S, Tesi T, Viola A, Mazzola M, Langone L (2018) Multi-year particle fluxes in Kongsfjorden, Svalbard. Biogeosciences 15:5343–5363

    Google Scholar 

  • De Corte D, Sintes E, Yokokawa T, Herndl GJ (2011) Changes in viral and bacterial communities during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-Ålesund). Environ Microbiol 13:1827–1841

    PubMed  Google Scholar 

  • Drewes F, Peter H, Sommaruga R (2016) Are viruses important in the plankton of highly turbid glacier-fed lakes? Sci Rep 6:24608. https://doi.org/10.1038/srep24608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decembrini F, Caroppo C, Azzaro M (2009) Size structure and production of phytoplankton community and carbon pathways channelling in the Southern Tyrrhenian Sea (Western Mediterranean). Deep Sea Res II 56:687–699

    CAS  Google Scholar 

  • Edler L, Elbrächter M (2010) The Utermöhl method for quantitative phytoplankton analysis. Intergovernmental Oceanographic Commission of UNESCO, Paris

    Google Scholar 

  • Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol. https://doi.org/10.1155/2011/893790

    Article  Google Scholar 

  • Gasol JM, de Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64:197–224

  • Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JH, McLaughlin FA, McNutt SL (2006) A major ecosystem shift in the northern Bering Sea. Science 311:1461–1464

    CAS  PubMed  Google Scholar 

  • Halbach L, Vihtakari M, Duarte P, Everett A, Granskog MA, Hop H, Kauko HM, Kristiansen S, Myhre PI, Pavlov AK, Pramanik A, Tatarek A, Torsvik T, Wiktor JM, Wold A, Wulff A, Steen H, Assmy F (2019) Tidewater gaciers and bedrock characteristics control the phytoplankton growth environment in a Fjord in the Arctic. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00254

    Article  Google Scholar 

  • Halldal P, Halldal K (1972) Phytoplankton, chlorophyll, and submarine light conditions in Kings Bay, Spitsbergen, Juy 1971. Norw J Bot 20:99–108

    Google Scholar 

  • He L, Yin K, Yuan X (2019) Double maximum ratios of viruses to bacteria in the water column: implications for different regulating mechanisms. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01593

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedges JI, Stern JH (1984) Carbon and nitrogen determination of carbonate-containing solids. Limnol Oceanogr 19:984–989

    Google Scholar 

  • Hodal H, Falk-PetersenS HH, Kristiansen S, Reigstad M (2012) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:191–203

    Google Scholar 

  • Hodgkins R, Hagen JO, Hamran SE (1999) 20th century mass balance and thermal regime change at Scott Turnerbreen, Svalbard. Ann Glaciol 28:216–220

    Google Scholar 

  • Hop H, Pearson TH, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey R, Lonne OJ, Zajaczkowski M, Falk-Petersen S, Kendall MA, Wängberg S-Å, Bischof K, Voronkov A, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Google Scholar 

  • Iversen KR, Seuthe L (2011) Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol 34:731–749

    Google Scholar 

  • Jiang X, Jianfeng HE, Caim I (2005) Abundance and biomass of heterotrophic microbes in the Kongsfjorden, Svalbard. Acta Oceanol Sin 24:143–152

    Google Scholar 

  • Jacquet S, Miki T, Noble R, Peduzzi P, Wilhelm S (2010) Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Adv Oceanogr Limnol. https://doi.org/10.1080/19475721003743843

    Article  Google Scholar 

  • Karl DM, Knauer GA, Martin JH (1987) Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332:438–441

    Google Scholar 

  • Kirchman DL, Malmstrom RR, Cottrell MT (2005) Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep Sea Res II. https://doi.org/10.1016/j.dsr2.2005.09.005

    Article  Google Scholar 

  • Kirchman DL, Xosé AG, Morán HDucklow (2009) Microbial growth in the polar oceans — role of temperature and potential impact of climate change. Nature Reviews Microbiology 7(6):451–459

    CAS  PubMed  Google Scholar 

  • Krajewska M, Szymczak-Żyła M, Tylmann W, Kowalewska G (2020) Climate change impact on primary production and phytoplankton taxonomy in Western Spitsbergen fjords based on pigments in sediments. Glob Planet Change. https://doi.org/10.1016/j.gloplacha.2020.103158

    Article  Google Scholar 

  • Krause JW, Schulz IK, Rowe KA, Dobbins W, Winding MHS, Sejr MK, Duarte CM, Agustí S (2019) Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom. Sci Rep. https://doi.org/10.1038/s41598-019-44587-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubiszyn M, Piwosz K, Wiktor JM Jr, Wiktor JM (2014) The effect of inter-annual Atlantic water inflow variability on the planktonic protist community structure in the West Spitsbergen waters during the summer. J Plankton Res 36:1190–1203

    Google Scholar 

  • La Ferla R, Azzaro F, Azzaro M, Caruso G, Decembrini F, Leonardi M, Maimone G, Monticelli LS, Raffa F, Santinelli C, Zaccone R, Ribera d’Alcalà M (2005) Microbial contribution to carbon biogeochemistry in the Central Mediterranean Sea: Variability of activities and biomass. J Mar Syst 57:146–166

    Google Scholar 

  • La Ferla R, Azzaro M, Budillon G, Caroppo C, Decembrini F, Maimone G (2010) Distribution of the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005). Adv Oceanogr Limnol 2:235–257

    Google Scholar 

  • Lalande C, Nöthig EM, Bauerfeind E, Hardge K, Beszczynska-Möller A, Fahl K (2016) Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait. Deep-Sea Res. https://doi.org/10.1016/j.dsr.2016.04.014

    Article  Google Scholar 

  • Lind S, Ingvaldsen RB, Furevik T (2018) Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat Climate Change 8:634–639

    Google Scholar 

  • Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe O, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471

    Google Scholar 

  • Lorenzen CI (1967) Determination of chlorophyll and phaeopigments spectrophotometric equations. Limnol Oceanogr 12:343–346

    CAS  Google Scholar 

  • Maat DS, Prins MA, Brussaard CPD (2019) Sediments from arctic tide-water glaciers remove coastal marine viruses and delay host infection. Viruses. https://doi.org/10.3390/v11020123,2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Marie D, Simon N, Vaulot D (2005) Phytoplankton cell counting by flow cytometry. In: Andersen RA (ed) Algal culturing techniques. Physiological Society of America, Oxford (UK), pp 253–267

    Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res 34:267–285

    CAS  Google Scholar 

  • Martinez R (1991) Biomass and respiratory ETS activity of microplankton in the Barents Sea. Polar Res. https://doi.org/10.3402/polar.v10i1.6738200

    Article  Google Scholar 

  • Meire L, Mortensen J, Meire P, Juul-Pedersen T, Sejr MK, Rysgaard S, Nygaard R, Huybrechts P, Meysman FJR (2017) Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob Chang Biol 23:5344–5357

    PubMed  Google Scholar 

  • Middelboe M, Glud RN, Sejr MK (2012) Bacterial carbon cycling in a subarctic fjord: a seasonal study on microbial activity, growth efficiency, and virus-induced mortality in Kobbefjord, Greenland. Limnol Oceanogr 57:1732–1742

    CAS  Google Scholar 

  • Monaco A, Courp T, Heussner S, Carbonne J, Fowler SW, Deniaux B (1990) Seasonality and composition of particulate fluxes during ECOMARGE-I, western Gulf of Lions. Cont Shelf Res 10:959–987

    Google Scholar 

  • Murray AG, Jackson GA (1992) Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar Ecol Prog Ser 89:103–116

    Google Scholar 

  • Nguyen D, Maranger R (2011) Respiration and bacterial carbon dynamics in Arctic sea ice. Polar Biol 34:1843–1855

    Google Scholar 

  • Packard TT, Devol AH, King FD (1975) The effect of temperature on the respiratory electron transport system in marine plankton. Deep Sea Res 22:237–249

    CAS  Google Scholar 

  • Payne CM, Roesler CS (2019) Characterizing the influence of Atlantic water intrusion on water mass formation and phytoplankton distribution in Kongsfjorden Svalbard. Cont Shelf Res. https://doi.org/10.1016/j.csr.2019.104005

    Article  Google Scholar 

  • Paulsen ML, Doré H, Garczarek L, Seuthe L, Müller O, Sandaa R-A, Bratbak G, Larsen A (2016) Synechococcus in the Atlantic gateway to the Arctic Ocean. Front Mar Sci. https://doi.org/10.3389/fmars.2016.0019

    Article  Google Scholar 

  • Pedrós-Alió C, Potvin M, Lovejoy C (2015) Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr 139:233–243

    Google Scholar 

  • Piquet AMT, Scheepens JF, Bolhuis H, Wiencke C, Buma AGJ (2010) Variability of protistan and bacterial communities in two Arctic fjords (Spitsbergen). Polar Biol 33:1521–1536

    Google Scholar 

  • Piquet AMT, van de Poll WH, Visser RJW, Wiencke C, Bolhuis H, Buma AGJ (2014) Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences 11:2263–2279

    Google Scholar 

  • Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, Krishfield R, Kwok R, Sundfjord A, Morison J, Rember R, Yulin A (2017) Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356:285–291

    CAS  PubMed  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Google Scholar 

  • Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJ, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the arctic associated with recent climate change. Science 325:1355–1358

    CAS  PubMed  Google Scholar 

  • Powell RD (1990) Glacimarine processes at grounding-line fans and their growth to ice-contact deltas. GSL. https://doi.org/10.1144/GSL.SP.1990.053.01.03

    Article  Google Scholar 

  • Proctor LM, Fuhrman JA (1991) Roles of viral infection in organic particle flux. Mar Ecol Prog Ser 69:133–142

    Google Scholar 

  • Promińska A, Falck E, Walczowski W (2018) Interannual variability in hydrography and water mass distribution in Hornsund, an Arctic fjord in Svalbard. Pol Res. https://doi.org/10.1080/17518369.2018.1495546

    Article  Google Scholar 

  • Ramírez T, Liger E, Mercado JM, Cortés D, Vargas-Yañez M, Sebastián M, Reul A, Aguilera J, Bautista B (2006) Respiratory ETS activity of plankton in the northwestern Alboran Sea: seasonal variability and relationship with hydrological and biological features. J Plank Res 28:629–641

    Google Scholar 

  • Sallon A, Michel C, Gosselin M (2011) Summertime primary production and carbon export in the southeastern Beaufort Sea during the low ice year of 2008. Polar Biol 34:989–2005

    Google Scholar 

  • Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    CAS  Google Scholar 

  • Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459(7246):556–559

    CAS  PubMed  Google Scholar 

  • Seuthe L, Iversen KR, Narcy F (2011) Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II Ciliates and dinoflagellates. Polar Biol 34:751–766

    Google Scholar 

  • Shikai C, Jianfeng HE, Peimin HE, Fang Z, Ling L, Yuxin M (2012) The adaptation of Arctic phytoplankton to low light and salinity in Kongsfjorden (Spitsbergen). Adv Pol Sci 23:19–24

    Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Google Scholar 

  • Sommaruga R, Kandolf G (2014) Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates. Sci Rep. https://doi.org/10.1038/srep04113

    Article  PubMed  PubMed Central  Google Scholar 

  • Straneo F, Curry RG, Sutherland DA, Hamilton GS, Cenedese C, Våge K, Stearns LA (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat Geosci 4:322–327

    CAS  Google Scholar 

  • Strickland JDH, Parson TR (1972) A practical handbook of seawater analysis. J Fish Res Board Can 167:1–311

    Google Scholar 

  • Svendsen H, Beszczynska-Moller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Orbaek JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Google Scholar 

  • Takahashi T, Broecker WS, Langer S (1985) Redfield ratio based on chemical data from isopycnal surfaces. J Geophys Res 90(C4):6907–6924

    CAS  Google Scholar 

  • Torsvik T, Albretsen J, Sundfjord A, Kohler J, Sandvik AD, Skarðhamar J, Lindbäck K, Everett A (2019) Impact of tidewater glacier retreat on the fjord system: modeling present and future circulation in Kongsfjorden, Svalbard. Estuar Coast Shelf Sci 220:152–165

    Google Scholar 

  • Trusel LD, Powell RD, Cumpston RM, Brigham-Grette J (2010) Modern glacimarine processes and potential future behaviour of Kronebreen and Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard. Geol Soc Lond 344:89–102

    Google Scholar 

  • Turley CM (1999) The changing Mediterranean Sea—a sensitive ecosystem? Prog Oceanogr 44:387–400

    Google Scholar 

  • Vaquer-Sunyer R, Duarte CM, Regaudie-De-Gioux A, Holding JM, García-Corral LS, Reigstad M, Wassmann P (2013) Seasonal patterns in Arctic planktonic metabolism (Fram Strait - Svalbard region). Biogeosciences 10:1451–1469

    Google Scholar 

  • Vincent WF (2010) Microbial ecosystem responses to rapid climate change in the Arctic. ISME J 4:1089–1091

    Google Scholar 

  • Weinbauer MG, Wilhelm SW, Suttle CA, Pledger RJ, Mitchell DL (1999) Sunlight-induced DNA damage and resistance in natural viral communities. Aquat Microb Ecol 17:111–120

    Google Scholar 

  • Wiggins B, Alexander M (1985) Minimum bacterial abundance for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49:19–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm SW, Jeffrey WH, Dean AL, Meador JJ, Pakulski D, Mitchell DL (2003) UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean. Aquat Microb Ecol 31:1–8

    Google Scholar 

  • Wróbel B, Filippini M, Piwowarczyk J (2013) Low virus to prokaryote ratios in the cold: benthic viruses and prokaryotes in a subpolar marine ecosystem (Hornsund, Svalbard). Int Microbiol 16:45–52

    PubMed  Google Scholar 

  • Zaborska A, Pempkowiak J, Papucci C (2006) Some sediment characteristics and sedimentation rates in an Arctic Fjord (Kongsfjorden, Svalbard). Ann Environ Protect 8:79–96

    Google Scholar 

  • Zaccone R, Caroppo C, La Ferla R, Zampino D, Caruso G, Leonardi M, Maimone G, Azzaro M, Sitran R (2004) Deep-chlorophyll maximum time series in the Augusta Gulf (Ionian Sea): microbial community structures and functions. Chem Ecol 20:267–284

    Google Scholar 

  • Zajaczkowski M (2002) On the use of sediment traps in sedimentation measurements in glaciated fjords. Polar Res 23:61–174

    Google Scholar 

  • Zajaczkowski M (2008) Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard. Pol Polar Res 29:59–72

    Google Scholar 

  • Zhang R, Li Y, Yan W, Wang Y, Cai L, Luo T, Li H, Weinbauer MG, Jiao N (2020) Viral control of biomass and diversity of bacterioplankton in the deep sea. Commun Biol. https://doi.org/10.1038/s42003-020-0974-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Zingone A, Totti C, Sarno D, Cabrini M, Caroppo C, Giacobbe MG, Lugliè S, Nuccio C, Socal G (2010) Fitoplancton: metodiche di analisi quali-quantitativa. In: Socal G, Buttino I, Cabrini M, Mangoni O, Penna A, Totti C (eds) Metodologie di studio del plancton marino, vol 56. Manuali e Linee Guida, pp 213–223

  • Zhu ZY, Wu Y, Liu SM, Wenger F, Hu J, Zhang J, Zhang RF (2016) Organic carbon flux and particulate organic matter composition in Arctic valley glaciers: examples from the Bayelva River and adjacent Kongsfjorden. Biogeosciences. https://doi.org/10.5194/bg-13-975-2016

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the Editor and three anonymous reviewers for their substantial suggestions. Many thanks to Dr. Mariarosa Maimone for friendly revising the English language.

Funding

This work was supported by ARCA project (ARtico: cambiamento Climatico Attuale ed eventi estremi del passato) of DSSTTA (Dipartimento Scienze del Sistema Terra e Tecnologie per l’Ambiente) del Consiglio Nazionale delle Ricerche (CNR) and by Short-Term Mobility of CNR, AMMCNT prot. N. 0061011 of 14/09/2016. A. S. Cabral was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

AM conceived and designed research; AM and MG wrote the manuscript; AM, AS, GF, and MS conducted field work and data analyses; MG, DF, CC, and CAS performed lab experiments and data analyses, LL, PR, and LR revised and improved the manuscript; CA performed statistics; RAC, AF, and MM performed lab experiments.

Corresponding author

Correspondence to M. Azzaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzaro, M., Aliani, S., Maimone, G. et al. Short-term dynamics of nutrients, planktonic abundances, and microbial respiratory activity in the Arctic Kongsfjorden (Svalbard, Norway). Polar Biol 44, 361–378 (2021). https://doi.org/10.1007/s00300-020-02798-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02798-w

Keywords

Navigation