The buoyancy-based biotope axis of the evolutionary radiation of Antarctic cryonotothenioid fishes

Abstract

In the absence of any prior comprehensive analysis, I evaluate divergence along the biotope axis in the habitat stage of the evolutionary radiation of Antarctic cryonotothenioids. I utilize the available percentage buoyancy (%B) measurements as habitat proxies for recognition of the pelagic, semipelagic, demersal, and benthic biotopes that include, respectively, 5%, 10%, 73%, and 12% of the 59 species and 1749 specimens in the study. The majority of species retain the ancestral demersal biotope of Eleginops maclovinus, and this probably enhances ecological plasticity. Divergence into the pelagic biotope is the most distinctive organismal feature of the radiation and, although only 5% of species are pelagic, this biotope is not depauperate in global comparisons. Pelagic or potentially pelagic species are Dissostichus mawsoni, D. eleginoides, Pleuragramma antarctica, Aethotaxis mitopteryx, and Gvozdarus svetovidovi. Small ontogenetic changes in %B with growth are typical; however, this is extensive in D. mawsoni, a species with the potential to transition through benthic to pelagic biotopes over ontogeny. Occupation of the pelagic biotope by large D. mawsoni may be impermanent as it is lipid-dependent, a contingency reliant on the availability of P. antarctica as prey. In unusual conditions, the specialized sacs of P. antarctica can also yield their lipid for metabolism with possible loss of buoyancy. Pelagic species are inordinately important in the food web. In the southwestern Ross Sea a guild of large mammalian and avian predators, which includes D. mawsoni, is reliant on lipid-rich, energy-dense cryonotothenioid prey. This includes asymmetrical intraguild predation on D. mawsoni, with P. antarctica as a basal resource for the guild.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

© NHK/National Geographic WILD/ZDF, used with permission

Fig. 5
Fig. 6

References

  1. Abe T, Iwami T (1989) Notes on fishes from the stomachs of whales taken in the Antarctic. II. On Dissostichus and Ceratias, with an appendix (Japanese names of important Antarctic fishes). Proc NIPR Symp Polar Biol 2:78–82

    Google Scholar 

  2. Ainley DG et al (2020) Further evidence that Antarctic toothfish are important in Weddell Seal diet. Antarct Sci 32 (in review)

  3. Ainley DG, Ballard G (2012) Trophic interactions and population trends of killer whales (Orcinus orca) in the southern Ross Sea. Aquat Mamm 38:153–160

    Google Scholar 

  4. Ainley DG, Siniff DB (2009) The importance of Antarctic toothfish as prey of Weddell seals in the Ross Sea. Antarct Sci 21:317–327

    Google Scholar 

  5. Ainley DG, Ballard G, Olmastroni S (2009) An apparent decrease in the prevalence of "Ross Sea Killer Whales" in the southern Ross Sea. Aquat Mamm 35:335–347. https://doi.org/10.1578/AM.35.3.2009.335

    Article  Google Scholar 

  6. Ainley DG et al (2018) Post-fledging survival of Adélie penguins at multiple colonies: chicks raised on fish do well. Mar Ecol Prog Ser 601:239–251. https://doi.org/10.3354/meps12687

    Article  Google Scholar 

  7. Albertson RC et al (2010) Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evol Biol 10:12. https://doi.org/10.1186/1471-2148-10-4

    Article  Google Scholar 

  8. Andrew TG, Hecht T, Heemstra PC, Lutjeharms JRE (1995) Fishes of the Tristan da Cunha Group and Gough Island, South Atlantic Ocean. Ichthyol Bull JLB Smith Inst Ichthyol 63:1–41

    Google Scholar 

  9. Angel MV (1993) Biodiversity of the pelagic ocean. Conserv Biol 7:760–772. https://doi.org/10.1046/j.1523-1739.1993.740760.x

    Article  Google Scholar 

  10. Balushkin AV (1984) Morphological bases of the systematics and phylogeny of the Nototheniid Fishes. Russian Translations Series 73, 1990. A.A. Balkema, Rotterdam

  11. Balushkin AV (1989) Gvozdarus svetovidovi gen. et sp. n. (Pisces, Nototheniidae) from the Ross Sea (Antarctic). Zool Zh 68:83–88 [in Russian]

    Google Scholar 

  12. Balushkin AV (1994) Gvozdarus svetovidovi gen. et sp. n. (Pisces, Nototheniidae) from Ross Sea (Antarctica). J Ichthyol 34:152–158

    Google Scholar 

  13. Barrera-Oro E (2002) The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct Sci 14:293–309

    Google Scholar 

  14. Barrera-Oro ER, Casaux RJ (1990) Feeding selectivity in Notothenia neglecta, Nybelin, from Potter Cove, South Shetland Islands, Antarctica. Antarct Sci 2:207–213

    Google Scholar 

  15. Barton M (2007) Bond's biology of fishes, 3rd edn. Thomson Brooks/Cole, Belmont, CA

    Google Scholar 

  16. Bilyk KT, DeVries AL (2010) Delayed onset of adult antifreeze activity in juveniles of the Antarctic icefish Chaenocephalus aceratus. Polar Biol 33:1387–1397. https://doi.org/10.1007/s00300-010-0828-6

    Article  Google Scholar 

  17. Bock C, Wermter FC, Mintenbeck K (2017) MRI and MRS on preserved samples as a tool in fish ecology. Magn Reson Imaging 38:39–46. https://doi.org/10.1016/j.mri.2016.12.017

    Article  PubMed  Google Scholar 

  18. Bone Q, Moore RH (2008) Biology of fishes, 3rd edn. Taylor & Francis, New York

    Google Scholar 

  19. Bowen BW et al (2020) Species radiations in the sea: what the flock? J Heredity 111:70–83. https://doi.org/10.1093/jhered/esz075

    Article  Google Scholar 

  20. Brickle P, Arkhipkin AI, Shcherbich ZN (2005a) Age and growth in a temperate euryhaline notothenioid, Eleginops maclovinus from the Falkland Islands. J Mar Biol Assoc 85:1217–1221

    Google Scholar 

  21. Brickle P, Laptikhovsky V, Arkhipkin A (2005b) Reproductive strategy of a primitive temperate notothenioid Eleginops maclovinus. J Fish Biol 66:1044–1059

    Google Scholar 

  22. Brix O, Grüner R, Rønnestad I, Gemballa S (2009) Whether depositing fat or losing weight, fish maintain a balance. Proc R Soc Lond Ser B 276:3777–3782. https://doi.org/10.1098/rspb.2009.1079

    Article  Google Scholar 

  23. Busacker GP, Adelman IR, Goolish EM (1990) Growth. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Bethesda, pp 363–387

    Google Scholar 

  24. Casaux R, Barrera-Oro E (2013) Dietary overlap in inshore notothenioid fish from the Danco Coast, western Antarctic Peninsula. Polar Res 32(21319):1–8. https://doi.org/10.3402/polar.v32i0.21319

    Article  Google Scholar 

  25. Chen L et al (2019) The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. GigaScience 8:1–16. https://doi.org/10.1093/gigascience/giz016

    CAS  Article  Google Scholar 

  26. Cohen DM (1970) How many recent fishes are there? Proc Calif Acad Sci 38:341–346

    Google Scholar 

  27. Colombo M, Damerau M, Hanel R, Salzburger W, Matschiner M (2015) Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes. J Evol Biol 28:376–394. https://doi.org/10.1111/jeb.12570

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Cullins TL, DeVries AL, Torres JJ (2011) Antifreeze proteins in pelagic fishes from Marguerite Bay (Western Antarctica). Deep-Sea Res II 58:1690–1694. https://doi.org/10.1016/j.dsr2.2009.05.034

    CAS  Article  Google Scholar 

  29. Cziko PA, Cheng C-HC (2006) A new species of nototheniid (Perciformes: Notothenioidei) fish from McMurdo Sound, Antarctica. Copeia 4:752–759

    Google Scholar 

  30. Dayton PK, Robilliard GA, Paine RT (1970) Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic Press, London, pp 244–258

    Google Scholar 

  31. Denny MW (1990) Terrestrial versus aquatic biology: the medium and its message. Am Zool 30:111–121

    Google Scholar 

  32. DeVries AL, Eastman JT (1978) Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 271:352–353

    Google Scholar 

  33. DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–331

    Google Scholar 

  34. Donaldson EM, Fagerlund UHM, Higgs DA, McBride JR (1979) Hormonal enhancement of growth. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology. Bioenergetics and growth, vol VIII. Academic Press, New York, pp 455–597

    Google Scholar 

  35. Donnelly J, Torres JJ, Sutton TT, Simoniello C (2004) Fishes of the eastern Ross Sea, Antarctica. Polar Biol 27:637–650

    Google Scholar 

  36. Duhamel G, Gasco N, Davaine P (2005) Poissons des îles Kerguelen et Crozet. Guide régional de l'océan Austral. Muséum national d'Histoire naturelle, Paris

    Google Scholar 

  37. Eastman JT (1985a) Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol 4:155–160

    Google Scholar 

  38. Eastman JT (1985b) The evolution of neutrally buoyant notothenioid fishes: their specializations and potential interactions in the Antarctic marine food web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 430–436

    Google Scholar 

  39. Eastman JT (1999) Aspects of the biology of the icefish Dacodraco hunteri (Notothenioidei, Channichthyidae) in the Ross Sea, Antarctica. Polar Biol 21:194–196

    Google Scholar 

  40. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Google Scholar 

  41. Eastman JT (2017) Bathymetric distributions of notothenioid fishes. Polar Biol 40:2077–2095. https://doi.org/10.1007/s00300-017-2128-x

    Article  Google Scholar 

  42. Eastman JT (2019) An analysis of maximum body size and designation of size categories for notothenioid fishes. Polar Biol 42:1131–1145. https://doi.org/10.1007/s00300-019-02502-7

    Article  Google Scholar 

  43. Eastman JT (2021) The axes of divergence for the evolutionary radiation of Antarctic notothenioid fishes. In: Gon O (ed) Fishes of the Southern Ocean, 2nd edn. South African Institute of Aquatic Biodiversity, Grahamstown (in review)

    Google Scholar 

  44. Eastman JT, Barrera-Oro E (2010) Buoyancy studies of three morphs of the Antarctic fish Trematomus newnesi (Nototheniidae) from the South Shetland Islands. Polar Biol 33:823–831

    Google Scholar 

  45. Eastman JT, Barry JP (2002) Underwater video observation of the Antarctic toothfish Dissostichus mawsoni (Perciformes: Nototheniidae) in the Ross Sea, Antarctica. Polar Biol 25:391–395

    Google Scholar 

  46. Eastman JT, DeVries AL (1981) Buoyancy adaptations in a swim-bladderless Antarctic fish. J Morphol 167:91–102

    PubMed  Google Scholar 

  47. Eastman JT, DeVries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. Copeia 2:385–393

    Google Scholar 

  48. Eastman JT, DeVries AL (1989) Ultrastructure of the lipid sac wall in the Antarctic notothenioid fish Pleuragramma antarcticum. Polar Biol 9:333–335

    Google Scholar 

  49. Eastman JT, McCune AR (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock? J Fish Biol 57(Suppl A):84–102

    Google Scholar 

  50. Eastman JT, Sidell BD (2002) Measurements of buoyancy for some Antarctic notothenioid fishes from the South Shetland Islands. Polar Biol 25:753–760

    Google Scholar 

  51. Eastman JT, Barrera-Oro E, Moreira E (2011) Adaptive radiation at a low taxonomic level: divergence in buoyancy of the ecologically similar Antarctic fish Notothenia coriiceps and N. rossii. Mar Ecol Prog Ser 438:195–206

    Google Scholar 

  52. Eastman JT et al (2013) Photographic survey of benthos provides insights into the Antarctic fish fauna from the Marguerite Bay slope and the Amundsen Sea. Antarct Sci 25:31–43

    Google Scholar 

  53. Eastman JT, Witmer LM, Ridgely RC, Kuhn KL (2014) Divergence in skeletal mass and bone morphology in Antarctic notothenioid fishes. J Morphol 275:841–861. https://doi.org/10.1002/jmor.20258

    Article  PubMed  Google Scholar 

  54. Emery AR (1978) The basis of fish community structure: marine and freshwater comparisons. Env Biol Fish 3:33–47

    Google Scholar 

  55. Falkland Islands Government (2003) The Falkland mullet Eleginops maclovinus: biology and fishery in Falkand Islands' waters. Scientific Report, Fisheries Department, Stanley

    Google Scholar 

  56. Fenaughty JM, Stevens DW, Hanchet SM (2003) Diet of the Antarctic toothfish (Dissostichus mawsoni) from the Ross Sea, Antarctica (Subarea 88.1). CCAMLR Sci 10:113–123

    Google Scholar 

  57. Fenaughty JM, Eastman JT, Sidell BD (2008) Biological implications of low condition factor "axe handle" specimens of the Antarctic toothfish, Dissostichus mawsoni, from the Ross Sea. Antarct Sci 20:537–551

    Google Scholar 

  58. Fernández DA, Calvo J, Wakeling JM, Vanella FA, Johnston IA (2002) Escape performance in the sub-Antarctic notothenioid fish Eleginops maclovinus. Polar Biol 25:914–920

    Google Scholar 

  59. Fernández DA, Ceballos SG, Malanga GF, Boy CC, Vanella FA (2012) Buoyancy of sub-Antarctic notothenioids including the sister lineage of all other notothenioids (Bovichtidae). Polar Biol 35:99–106

    Google Scholar 

  60. Foster BA, Montgomery JC (1993) Planktivory in benthic nototheniid fish in McMurdo Sound, Antarctica. Env Biol Fish 36:313–318

    Google Scholar 

  61. Friedrich C, Hagen W (1994) Lipid contents of five species of notothenioid fish from high-Antarctic waters and ecological implications. Polar Biol 14:359–369

    Google Scholar 

  62. Gaither MR, Bowen BW, Rocha LA, Briggs JC (2016) Fishes that rule the world: circumtropical distributions revisited. Fish Fisheries 17:664–679. https://doi.org/10.1111/faf.12136

    Article  Google Scholar 

  63. Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    CAS  PubMed  Google Scholar 

  64. Ghigliotti L et al (2018) Surface egg structure and early embryonic development of the Antarctic toothfish, Dissostichus mawsoni Norman 1937. Polar Biol 41:1717–1724. https://doi.org/10.1007/s00300-018-2311-8

    Article  Google Scholar 

  65. Gon O, Heemstra P (eds) (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown

    Google Scholar 

  66. Gosline WA (1971) Functional morphology and classification of Teleostean fishes. University Press of Hawaii, Honolulu

    Google Scholar 

  67. Greely TM, Gartner JV Jr, Torres JJ (1999) Age and growth of Electrona antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Mar Biol 133:145–158

    Google Scholar 

  68. Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol 20:229–247. https://doi.org/10.1007/s003000050300

    Article  Google Scholar 

  69. Hagen W, Kattner G (2017) The role of lipids in the life history of the Antarctic silverfish Pleuragramma antarctica. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish: a keystone species in a changing ecosystem, advances in polar ecology, vol 3. Springer International, Cham, pp 131–148

    Google Scholar 

  70. Helfman GS, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology: evolution, and ecology, 2nd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  71. Klingenberg CP, Ekau W (1996) A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol J Linn Soc 59:143–177

    Google Scholar 

  72. Kock K-H (2005) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part I. Polar Biol 28:862–895

    Google Scholar 

  73. Kuhn KL, Near TJ, Detrich HW, Eastman JT (2011) Biology of the Antarctic dragonfish Vomeridens infuscipinnis (Notothenioidei: Bathydraconidae). Antarct Sci 23:18–26

    Google Scholar 

  74. La Mesa M, Piepenburg D, Pineda-Metz SEA, Riginella E, Eastman JT (2019) Spatial distribution and habitat preferences of demersal fish assemblages in the southeastern Weddell Sea (Southern Ocean). Polar Biol 42:1025–1040. https://doi.org/10.1007/s00300-019-02495-3

    Article  Google Scholar 

  75. Lauriano G, Vacchi M, Ainley D, Ballard G (2007) Observations of top predators foraging on fish in the pack ice of the southern Ross Sea. Antarct Sci 19:439–440

    Google Scholar 

  76. Lauriano G, Pirotta E, Joyce T, Pitman R, Borrell A, Panigada S (2020) Movements, diving behaviour and diet of type-C killer whales (Orcinus orca) in the Ross Sea, Antarctica. Aquatic Conserv Mar Freshw Ecosyst (in review)

  77. Lecointre G et al (2013) Is the species flock concept operational? The Antarctic shelf case. PLoS ONE 8:e68787. https://doi.org/10.1371/journal.pone.0068787

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Lenky C, Eisert R, Oftedal OT, Metcalf V (2012) Proximate composition and energy density of nototheniid and myctophid fish in McMurdo Sound and the Ross Sea, Antarctica. Polar Biol 35:717–724. https://doi.org/10.1007/s00300-011-1116-9

    Article  Google Scholar 

  79. Lincoln R, Boxshall G, Clark P (1998) A dictionary of ecology, evolution and systematics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  80. Loeb VJ, Kellermann AK, Koubbi P, North AW, White MG (1993) Antarctic larval fish assemblages: a review. Bull Mar Sci 53:416–449

    Google Scholar 

  81. Martinez E, Torres JJ (2017) Energetics of the Antarctic silverfish, Pleuragramma antarctica, from the Western Antarctic Peninsula. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish: a keystone species in a changing ecosystem, advances in polar ecology. Springer, Cham, pp 149–171

    Google Scholar 

  82. McCune AR, Carlson RL (2004) Twenty ways to lose your bladder: common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes. Evol Dev 6:246–259

    PubMed  Google Scholar 

  83. Meunier FJ (2002) Skeleton. In: Panfili J, de Pontual H, Troadec H, Wright PJ (eds) Manual of fish Sclerochronology. Ifremer-IRD coedition, Brest, pp 65–88

    Google Scholar 

  84. Meunier FJ, Lecomte F, Duhamel G (2018) Some histological data on bone and teeth in the grey notothen (Lepidonotothen squamifrons) and in the mackerel icefish (Champsocephalus gunnari) (Notothenioidei; Perciformes; Teleostei). Cybium 42:91–97

    Google Scholar 

  85. Miya M et al (2013) Evolutionary origin of the Scombridae (Tunas and Mackerels): members of a Paleogene adaptive radiation with 14 other pelagic fish families. PLoS ONE 8:e73535. https://doi.org/10.1371/journal.pone.0073535

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Mommsen TP, French CJ, Hochachka PW (1980) Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can J Zool 58:1785–1799

    CAS  Google Scholar 

  87. Naish T et al (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458:322–328. https://doi.org/10.1038/nature07867

    CAS  Article  PubMed  Google Scholar 

  88. Near TJ, Russo SE, Jones CD, DeVries AL (2003) Ontogenetic shift in buoyancy and habitat in the Antarctic toothfish, Dissostichus mawsoni (Perciformes: Nototheniidae). Polar Biol 26:124–128

    Google Scholar 

  89. Near TJ, Kendrick BJ, Detrich HW, Jones CD (2007) Confirmation of neutral buoyancy in Aethotaxis mitopteryx DeWitt (Notothenioidei: Nototheniidae). Polar Biol 30:443–447

    Google Scholar 

  90. Near TJ, Jones CD, Eastman JT (2009) Geographic intraspecific variation in buoyancy within Antarctic notothenioid fishes. Antarct Sci 21:123–129

    Google Scholar 

  91. Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, Zane L, Fernández DA, Jones CD (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Nat Acad Sci USA 109:3434–3439. https://doi.org/10.1073/pnas.1115169109

    Article  PubMed  Google Scholar 

  92. Near TJ et al (2015) Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evol Biol 15:109. https://doi.org/10.1186/s12862-015-0362-9

    Article  PubMed  PubMed Central  Google Scholar 

  93. Near TJ, MacGuigan DJ, Parker E, Struthers CD, Jones CD, Dornburg A (2018) Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations. Mol Phylogenet Evol 129:268–279. https://doi.org/10.1016/j.ympev.2018.09.001

    CAS  Article  PubMed  Google Scholar 

  94. Nikolsky GV (1963) The ecology of fishes. Academic Press, London

    Google Scholar 

  95. Nybelin O (1947) Antarctic fishes. Sci Result Norweg Antarct Exped 26:1–76

    Google Scholar 

  96. O'Driscoll RL et al (2018) Acoustic deployments reveal Antarctic silverfish under ice in the Ross Sea. Antarct Sci 30:345–353. https://doi.org/10.1017/s0954102018000366

    Article  Google Scholar 

  97. Oyarzún C, Campos PW, Valeria HR (1988) Adaptaciones para la flotabilidad en Dissostichus eleginoides Smitt, 1898 (Pisces, Perciformes, Nototheniidae). Invest Pesq Barcelona 52:455–466

    Google Scholar 

  98. Pakhomov EA (1997) Feeding and exploitation of the food supply by demersal fishes in the Antarctic part of the Indian Ocean. J Ichthyol 37:360–380

    Google Scholar 

  99. Parker SJ, Mormede S, Hanchet S, DeVries AL, Canese S, Ghigliotti L (2019) Monitoring Antarctic toothfish in McMurdo Sound to evaluate the Ross Sea region marine protected area. Antarct Sci 31:195–207. https://doi.org/10.1017/S0954102019000245

    Article  Google Scholar 

  100. Paxton CGM (1998) A cumulative species description curve for large open water marine animals. J Mar Biol Assoc 78:1389–1391. https://doi.org/10.1017/S0025315400044611

    Article  Google Scholar 

  101. Pelster B (1998) Buoyancy. In: Evans DH (ed) The physiology of fishes, 2nd edn. CRC Press, Boca Raton, pp 25–42

    Google Scholar 

  102. Pelster B (2009) Buoyancy control in aquatic vertebrates. In: Glass ML, Wood SC (eds) Cardio-respiratory control in vertebrates. Springer, Berlin, pp 65–98

    Google Scholar 

  103. Permitin YE (1970) The consumption of krill by Antarctic fishes. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic Press, London, pp 177–182

    Google Scholar 

  104. Pitman RL, Fearnbach H, Durban JW (2018) Abundance and population status of Ross Sea killer whales (Orcinus orca, type C) in McMurdo Sound, Antarctica: evidence for impact by commercial fishing? Polar Biol 41:781–792. https://doi.org/10.1007/s00300-017-2239-4

    Article  Google Scholar 

  105. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation—potential competitors that eat each other. Ann Rev Ecol Syst 20:297–330. https://doi.org/10.1146/annurev.es.20.110189.001501

    Article  Google Scholar 

  106. Postlethwait JH, Yan Y-L, Desvignes T, Allard C, Titus T, Le François NR, Detrich HW III (2016) Embryogenesis and early skeletogenesis in the Antarctic bullhead notothen, Notothenia coriiceps. Dev Dyn 245:1066–1080. https://doi.org/10.1002/dvdy.24437

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Priscu JC, Powell RD, Tulaczyk S (2010) Probing subglacial environments under the Whillans Ice Stream. Eos 91:253–254. https://doi.org/10.1029/2010EO290002

    Article  Google Scholar 

  108. Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B, Chang J, Alfaro ME (2013) Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat Commun 4:1958. https://doi.org/10.1038/ncomms2958

    CAS  Article  PubMed  Google Scholar 

  109. Rodrigues KA, Jaureguizar AJ, Guerrero RA (2013) Environmental factors that define the spawning and nursery areas for Percophis brasiliensis (Teleostei: Percophididae) in a multispecific reproductive coastal zone, El Rincón (39°–41° S), Argentina. Hydrobiologia 709:1–10. https://doi.org/10.1007/s10750-013-1479-8

    CAS  Article  Google Scholar 

  110. Rutschmann S, Matschiner M, Damerau M, Muschick M, Lehmann MF, Hanel R, Salzburger W (2011) Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol Ecol 20:4707–4721

    PubMed  Google Scholar 

  111. Salas L, Nur N, Ainley D, Burns JM, Rotella J, Ballard G (2017) Coping with the loss of large, energy-dense prey: a potential bottleneck for Weddell Seals in the Ross Sea. Ecol Appl 27:10–25

    PubMed  Google Scholar 

  112. Schaafsma FL, Cherel Y, Flores H, van Franeker JA, Lea MA, Raymond B, van de Putte AP (2018) Review: the energetic value of zooplankton and nekton species of the Southern Ocean. Mar Biol. https://doi.org/10.1007/s00227-018-3386-z

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  114. Shandikov GA, Kratkiy VY (1990) Capture of a second specimen of Gvozdarus svetovidovi (Nototheniidae) in the Sodruzhestvo Sea (East Antarctica). J Ichthyol 30:143–147

    Google Scholar 

  115. Stevens DW, Dunn MR, Pinkerton MH, Forman JS (2014) Diet of Antarctic toothfish (Dissostichus mawsoni) from the continental slope and oceanic features of the Ross Sea region, Antarctica. Antarct Sci 26:502–512

    Google Scholar 

  116. Stowasser G, Pond DW, Collins MA (2012) Fatty acid trophic markers elucidate resource partitioning within the demersal fish community of South Georgia and Shag Rocks (Southern Ocean). Mar Biol 159:2299–2310

    CAS  Google Scholar 

  117. Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. Trends Ecol Evol 18:126–131

    Google Scholar 

  118. Streelman JT, Alfaro M, Westneat MW, Bellwood DR, Karl SA (2002) Evolutionary history of the parrotfishes: biogeography, ecomorphology, and comparative diversity. Evolution 56:961–971

    CAS  PubMed  Google Scholar 

  119. Tulaczyk S et al (2014) WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann Glaciol 55:51–58. https://doi.org/10.3189/2014AoG65A009

    Article  Google Scholar 

  120. van Lier JR, Harasti D, Laird R, Noble MM, Fulton CJ (2017) Importance of soft canopy structure for labrid fish communities in estuarine mesohabitats. Mar Biol. https://doi.org/10.1007/s00227-017-3068-2

    Article  Google Scholar 

  121. Vanella FA, Calvo J (2005) Influence of temperature, habitat and body mass on routine metabolic rates of Subantarctic teleosts. Sci Mar 69:317–323

  122. Voronina EP, Neelov AV (2001) Structural traits of alimentary tract of fishes of the family Channichthyidae (Notothenioidei). J Ichthyol 41:778–788

    Google Scholar 

  123. Voskoboinikova OS (2001) Evolutionary significance of heterochronies in the development of the bony skeleton in fishes of the suborder Notothenioidei (Perciformes). J Ichthyol 41:415–424

    Google Scholar 

  124. Voskoboinikova OS (2007) The growth rate of skeleton in ontogeny of the Antarctic fish from the suborder Notothenioidae (Perciformes, Pisces) and the problem of cold compensation. Doklady Biol Sci 415:307–309

    CAS  Google Scholar 

  125. Voskoboinikova OS (2010) Ontogenetic bases of the Notothenioid evolution. Russian Academy of Sciences, Zoological Institute, Explorations of the Fauna of the Seas, St. Petersburg

    Google Scholar 

  126. Voskoboinikova OS, Detrich HW, Albertson RC, Postlethwait JH, Ghigliotti L, Pisano E (2017) Evolution reshaped life for the water column: the skeleton of the Antarctic silverfish Pleuragrama antarctica Boulenger, 1902. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish: a keystone species in a changing ecosystem, advances in polar ecology. Springer International, Cham, pp 3–26

    Google Scholar 

  127. Wells RMG (2005) Blood-gas transport and hemoglobin function in polar fishes: does low temperature explain physiological characters. In: Farrell AP, Steffensen JF (eds) The physiology of polar fishes. fish physiology, vol 22. Elsevier Academic Press, San Diego, pp 281–316

    Google Scholar 

  128. Witten PE, Hall BK (2015) Teleost skeletal plasticity: modulation, adaptation, and remodelling. Copeia 103:727–739. https://doi.org/10.1643/cg-14-140

    Article  Google Scholar 

  129. Yukhov VL (1970) New data on the distribution and biology of Dissostichus mawsoni Norm. in Antarctic high latitudes. J Ichthyol 10:422–424

    Google Scholar 

  130. Ziegler AF, Smith CR, Edwards KF, Vernet M (2017) Glacial dropstones: islands enhancing seafloor species richness of benthic megafauna in West Antarctic Peninsula fjords. Mar Ecol Prog Ser 583:1–14. https://doi.org/10.3354/meps12363

    Article  Google Scholar 

Download references

Acknowledgements

For providing information, advice or permissions to use photos, I thank David Ainley (H.T. Harvey & Associates Ecological Consultants), Maggie Amsler (University of Alabama, Birmingham), Arcady Balushkin (Zoological Institute, Russian Academy of Sciences), Elena Boucher, Stacy Kim (Moss Landing Marine Labs), Komoda Masazumi (NHK Japan), Thomas Near (Yale University), and John Priscu (Montana State University). Three reviewers provided useful comments. The work was supported by NSF ANT 04-36190.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Eastman.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Ethical approval

The author has followed all applicable national and institutional guidelines for the collection, care, and ethical use of research organisms and material in the conduct of the research, specifically those of the Ohio University Institutional Animal Care and Use Committees.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eastman, J.T. The buoyancy-based biotope axis of the evolutionary radiation of Antarctic cryonotothenioid fishes. Polar Biol (2020). https://doi.org/10.1007/s00300-020-02702-6

Download citation

Keywords

  • Pelagic biotope
  • Ecological plasticity
  • Ross Sea
  • Intraguild predation