Skip to main content

Advertisement

Log in

Seasonal succession, distribution, and diversity of planktonic protists in relation to hydrography of the Godthåbsfjord system (SW Greenland)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

High-latitude fjord environments are undergoing dynamic seasonal changes, affecting spatio-temporal patterns in planktonic abundances. To investigate how physical gradients impact sub-Arctic planktonic protists (> 20 μm), a seasonal transect study was performed in 2013 during three periods of planktonic succession: spring, summer, and autumn. The samples were collected from the glacier-fjord-ocean transect in SW Greenland using two complementary sampling methods, i.e. net hauls (20-μm net) and Niskin bottles. The key drivers of the distribution of planktonic groups and dominant taxa were hydrographic properties (defined as ‘time’, salinity, and temperature) reflecting the area’s seasonally changing circulation system. Cold and relatively saline waters in spring favoured the single haptophyte species Phaeocystis cf. pouchetii, while in summer, fresher waters influenced by glacial discharge favoured diatoms, followed by dinoflagellates and predatory ciliates in autumn. Our findings reveal a monodominant structure among the planktonic protists observed in each key sub-region and in each season. (1) Gedaniella boltonii (spring) was associated with inner fjord upwelling, (2) Chaetoceros sp. (summer) and Chaetoceros cf. socialis (autumn) were linked to ‘glacial meltwater’ circulation in the main fjord, and (3) Thalassiosira poroseriata (summer) and Skeletonema sp. (autumn) characterized warm and relatively saline offshore waters influenced by the West Greenland Current. The observed spatio-temporal patterns were linked to changes in hydrographic regimes driven by the interplay between the melting of the Greenland Ice Sheet and inflows of offshore, Atlantic-sourced waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arendt KE, Nielsen TG, Rysgaard S, Tönnesson K (2010) Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar Ecol Prog Ser 401:49–62

    Article  CAS  Google Scholar 

  • Arendt KE, Juul-Pedersen T, Mortensen J, Rysgaard S (2013) A 5-year study of seasonal patterns in mesozooplankton community structures in a sub-Arctic fjord reveals dominance of Microsetella norvegica (Crustacea, Copepoda). J Plankton Res 35:105–120

    Article  Google Scholar 

  • Birks HJB (1995) Quantitative palaeo environmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data, Technical Guide No. 5. Quaternary Research Association, Cambridge, UK, pp 161–236

  • Chamnansinp A, Li Y, Lundholm N, Moestrup Ø (2013) Global diversity of two widespread, colony-forming diatoms of the marine plankton, Chaetoceros socialis (syn. C. radians) and Chaetoceros gelidus sp. nov. J Phycol 49:1128–1141. https://doi.org/10.1111/jpy.12121

    Article  CAS  PubMed  Google Scholar 

  • Degerlund M, Eilertsen HC (2010) Main species characteristics of phytoplankton spring blooms in NE Atlantic and Arctic waters (68–80° N). Estuaries Coasts 33:242–269

    Article  CAS  Google Scholar 

  • Degerlund M, Huseby S, Zingone A, Sarno D, Landfald B (2012) Functional diversity in cryptic species of Chaetoceros socialis Lauder (Bacillariophyceae). J Plankton Res 34:416–431. https://doi.org/10.1093/plankt/fbs004

    Article  CAS  Google Scholar 

  • Gradinger RR, Baumann MEM (1991) Distribution of phytoplankton communities in relation to the large-scale hydrographical regime in the Fram Strait. Mar Biol 111:311–321

    Article  Google Scholar 

  • Greenland Ecosystem Monitoring. http://www.g-e-m.dk. Accessed 28 Feb 2018

  • Grøntved B, Seidenfaden G (1938) The phytoplankton of the waters west of Greenland. Medd Grønland 82:5–380

    Google Scholar 

  • Guiry MD, Guiry GM (2018) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org. Accessed 09 May 2018

  • Hasle GR, Heimdal BR (1998) The net phytoplankton from Kongsfjorden, Svalbard, July 1988, with general remarks on species composition of arctic phytoplankton. Polar Res 17:31–52

    Article  Google Scholar 

  • Hasle GR, Syvertsen EE (1996) Marine diatoms. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic Press, San Diego

    Google Scholar 

  • Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105. https://doi.org/10.1016/j.jmarsys.2013.01.003

    Article  Google Scholar 

  • Juul-Pedersen T, Rysgaard S, Batty P, Mortensen J, Arendt KE, Retzel A, Nygaard R, Burmeister A, Martinsen W, Sejr MK, et al (2010) Nuuk basic: the MarineBasis programme. In: Jensen LM, Rasch M (eds) Nuuk ecological research operations, 4th Annual Report, 2010. Aarhus University, DCE—Danish Centre for Environment and Energy, Denmark, pp 45–67

  • Juul-Pedersen T, Arendt KE, Mortensen J, Krawczyk D, Rysgaard S, Retzel A, Nygaard R, Burmeister A., Krause-Jensen D, et al (2014) Nuuk Basic: The MarineBasis programme. In: Jensen LM, Christensen TR (eds) Nuuk ecological research operations, 7th Annual Report, 2013. Aarhus University, DCE—Danish Centre for Environment and Energy, Denmark, pp 46–68

  • Juul-Pedersen T, Arendt KE, Mortensen J, Blicher ME, Søgaard DH, Rysgaard S (2015) Seasonal and interannual phytoplankton production in a sub-arctic tidewater outlet glacier fjord, SW Greenland. Mar Ecol Prog Ser 524:27–38. https://doi.org/10.3354/meps11174

    Article  Google Scholar 

  • Kraberg A, Baumann M, Dürselen C-D (2010) Coastal phytoplankton. Photo Guide for Northern European Seas. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Krawczyk DW, Arendt KE, Juul-Pedersen T, Sejr MK, Blicher ME, Jakobsen HH (2015a) Spatial and temporal distribution of planktonic protists in the East Greenland fjord and offshore waters. Mar Ecol Prog Ser 538:99–116. https://doi.org/10.3354/meps11439

    Article  CAS  Google Scholar 

  • Krawczyk DW, Witkowski A, Juul-Pedersen T, Arendt KE, Mortensen J, Rysgaard S (2015b) Microplankton succession in a SW Greenland tidewater glacial fjord influenced by coastal inflows and run-off from the Greenland Ice Sheet. Polar Biol 38:1515–1533. https://doi.org/10.1007/s00300-015-1715-y

    Article  Google Scholar 

  • Kubiszyn AM, Wiktor JM, Wiktor JM Jr, Griffiths C, Kristiansen S, Gabrielsen TM (2017) The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitzbergen). J Mar Syst 169:61–72

    Article  Google Scholar 

  • Li CL, Witkowski A, Ashworth MP, Dąbek P, Sato S, Zgłobicka I, Witak M, Khim JS, Kwon CJ (2018) The morphology and molecular phylogenetics of some marine diatom taxa within the Fragilariaceae, including twenty-three undescribed species and their relationship to Nanofrustulum, Opephora and Pseudostaurosira. Phytotaxa. https://doi.org/10.11646/phytotaxa.00.1.1

    Article  Google Scholar 

  • Lopes C, Mix AC, Abrantes F (2010) Environmental controls of diatom species in the northeast Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 297:188–200

    Article  Google Scholar 

  • Meire L, Mortensen J, Rysgaard S, Bendtsen J, Boone W, Meire P, Meysman FJR (2016) Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthåbsfjord, SW Greenland). J Geophys Res Biogeosci 121:1581–1592. https://doi.org/10.1002/2015jg003240

    Article  Google Scholar 

  • Mortensen J, Lennert K, Bendtsen J, Rysgaard S (2011) Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J Geophys Res. https://doi.org/10.1029/2010JC006528

    Article  Google Scholar 

  • Mortensen J, Bendtsen J, Motyka RJ, Lennert K, Truffer M, Fahnestock M, Rysgaard S (2013) On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J Geophys Res Oceans 118:1382–1395. https://doi.org/10.1002/jgrc.20134

    Article  Google Scholar 

  • Mortensen J, Bendtsen J, Lennert K, Rysgaard S (2014) Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N). J Geophys Res Earth Surf 119:2591–2603. https://doi.org/10.1002/2014JF003267

    Article  Google Scholar 

  • Munk P, Hansen BW, Nielsen TG, Thomsen HA (2003) Changes in plankton and fish larvae communities across hydrographic fronts off West Greenland. J Plankton Res 25:815–830

    Article  Google Scholar 

  • Nielsen TG, Hansen PJ (1999) Dyreplankton I danske farvande. Miljø- og Energiministeriet. Danmarks Miljøundersøgelsen, Denmark

    Google Scholar 

  • Onda DFL, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C (2017) Seasonal and Interannual Changes in Ciliate and Dinoflagellate Species Assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front Mar Sci 4:1–16. https://doi.org/10.3389/fmars.2017.00016

    Article  Google Scholar 

  • Poulin M, Daugbjerg N, Gradinger R (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar Biodivers 41:13–28. https://doi.org/10.1007/s12526-010-0058-8

    Article  Google Scholar 

  • Quillfeldt CH (1996) Ice algae and phytoplankton in north Norwegian and arctic waters: species composition, succession and distribution. PhD dissertation, University of Tromsø, Norges fiskerihøgskole, Norway

  • Quillfeldt CH (1997) Distribution of diatoms in the Northeast Water Polynya, Greenland. J Mar Syst 10:1–4. https://doi.org/10.1016/S0924-7963

    Article  Google Scholar 

  • Quillfeldt CH (2001) Identification of some easily confused common diatoms species in Arctic spring blooms. Bot Mar 44:375–389

    Google Scholar 

  • Richter A, Rysgaard S, Dietrich R, Mortensen J, Petersen D (2011) Coastal tides in West Greenland derived from tide gauge records. Ocean Dyn 61:39–49. https://doi.org/10.1007/s10236-010-0341-z

    Article  Google Scholar 

  • Rodríguez-Ramos T, Dornelas M, Marañón E, Cermeño P (2014) Conventional sampling methods severely underestimate phytoplankton species richness. J Plankton Res 36:334–343

    Article  Google Scholar 

  • Sejr M, Frandsen E, Winding M (2015) Zackenberg Basic: The MarineBasis programme. In: Hensen J, Topp-Jørgensen E, Christensen TR (eds) Zackenberg ecological research operations, 21th Annual Report, 2015. Aarhus University, DCE—Danish Centre for Environment and Energy, Denmark, pp 59–65

  • Smidt ELB (1979) Annual cycles of primary production and of zooplankton at Southwest Greenland. Medd Grønland. Bioscience 1:1–53

    Google Scholar 

  • ter Braak CJF, Ŝmilauer P (2002) CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, New York, USA

  • Throndsen J, Hasle GR, Tangen K (2007) Phytoplankton of Norwegian coastal waters. Almater Forlag As, Oslo

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommung der quantitative Phytoplanktomethodik. Mitt Int Ver Limnol 9:1–39

    Google Scholar 

  • Verity PG, Zirbel MJ, Nejstgaard JC (2007) Formation on very young colonies by Phaeocystis pouchetii from western Norway. Aquat Microb Ecol 47:267–274

    Article  Google Scholar 

  • Witkowski A, Barka F, Mann DG, Li CL, Weisenborn JLF, Ashworth MP, Kurzydłowski KJ, Zgłobicka I, Dobosz S (2014) A description of Biremis panamae sp. nov., a new diatom species from the marine littoral, with an account of the phylogenetic position of Biremis D.G. Mann et E.J. Cox (Bacillariophyceae). PLoS ONE. https://doi.org/10.1371/journal.pone.0114508

    Article  PubMed  PubMed Central  Google Scholar 

  • WoRMS Editorial Board (2018) World register of marine species. http://www.marinespecies.org at VLIZ. Accessed 09 May 2018. https://doi.org/10.14284/170

Download references

Acknowledgements

We wish to thank the crew of R/V Sanna for field assistance. We express our gratitude to Andrzej Witkowski for taxonomic expertise of the new diatom species. The MarineBasic-Nuuk programme, part of the Greenland Ecosystem Monitoring Program, was funded by the Danish Energy Agency (Dancea) as part of its climate support programme for the Arctic. We acknowledge the financial support received from the Greenland Institute of Natural Resources, the Aage V. Jensen Charity Foundation, the Canadian Excellence Research Chair (CERC) program, the Arctic Science Partnership (ASP) and the ArcticNet Networks of Centres of Excellence programs. We want to thank the three anonymous reviewers for constructive comments and the University of Copenhagen for language improvement. This publication is a contribution to the MarineBasic-Nuuk programme and to the Greenland Climate Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Krawczyk.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Supplementary material 2 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krawczyk, D.W., Meire, L., Lopes, C. et al. Seasonal succession, distribution, and diversity of planktonic protists in relation to hydrography of the Godthåbsfjord system (SW Greenland). Polar Biol 41, 2033–2052 (2018). https://doi.org/10.1007/s00300-018-2343-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2343-0

Keywords

Navigation