Skip to main content
Log in

Freshwater diversity in Svalbard: providing baseline data for ecosystems in change

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The high Arctic is in a rapid transition due to climate change, and both direct effects due to warming and an extended growing season, as well as an indirect effect caused by increased bird activity and density (notably geese), strongly affect ponds and lakes. Our study presents the hitherto most comprehensive data on invertebrate freshwater diversity at Svalbard and had three main purposes: to provide a current “baseline” of community composition, to compare current species distribution and occurrence with older data to identify changes that have already occurred, and finally to identify how diversity and community composition are related to the age of localities. To address these aims, we conducted a survey of freshwater invertebrates in 75 ponds and lakes at Svalbard in August 2014 and 2015. We provide a full report of the species’ inventory data for zooplankton, benthos, and meiofauna. We also provide data for species that have likely colonized the sites over the previous decades. Finally, our study also clearly demonstrates a diversity gradient related to ecosystem age and/or parameters confounded with age (e.g., productivity), which may hint at the rate of colonization over the time span from the oldest to the youngest localities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alekseev VR, Tsalolikhin SY (ed) (2010) Guide of freshwater zooplankton and zoobenthos of European Russia. Zooplankton 1. KMK Scientific Press, Moscow, p 495 (in Russian)

  • Alfsnes K, Hobæk A, Wieder LJ, Hessen DO (2016) Birds, nutrients and climate change: mtDNA haplotype diversity of Arctic Daphnia on Svalbard revisited. Polar Biol 39(8):1425–1437

    Article  Google Scholar 

  • Azzoni RS, Franzetti A, Fontaneto D, Zullini A, Ambrosini R (2015) Nematodes and rotifers on two Alpine debris-covered glaciers. Italian J Zool 82(4):616–623

    Article  Google Scholar 

  • Bartsch I (2006) Halacaroidea (Acari): a guide to marine genera. Org Divers Evol 6:1–104

    Article  Google Scholar 

  • Belyaeva M, Taylor DJ (2009) Cryptic species within the Chydorus sphaericus species complex (Crustacea: Cladocera) revealed by molecular markers and sexual stage morphology. Mol Phylogenet Evol 50(3):534–546

    Article  CAS  PubMed  Google Scholar 

  • Bennike O (1999) Colonization of Greenland by plants and animals after the last ice age: a review. Polar Rec 35(195):323–336

    Article  Google Scholar 

  • Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia GS et al (2010) Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact 14:1–20

    Article  Google Scholar 

  • Brehm V (1917a) Entomostraken aus Spitzbergen. Arch Hydrobiol Plankt 11:609–623

    Google Scholar 

  • Brehm V (1917b) Entomostraken aus Spitzbergen. Arch Hydrobiol Plankt 11:609–623

    Google Scholar 

  • Brooks SJ, Birks HJB (2004) The dynamics of Chironomidae (Insecta: Diptera) assemblages in response to environmental change during the past 700 years on Svalbard. J Paleolimnol 31:483–498

    Article  Google Scholar 

  • Christoffersen KS, Amsinck SL, Landkildehus F, Lauridsen TL, Jeppesen E (2008) Lake flora and fauna in relation to ice-melt, water temperature and chemistry at Zackenberg. Adv Ecol Res 40:371–389

    Article  Google Scholar 

  • Coffman WP, Cranston PS, Oliver DR, Sæther OA (1986) The pupae of Orthocladiinae (Diptera: Chironomidae) of the Holarctic region—keys and diagnoses. In: Wiederholm T (ed) Chironomidae of the Holarctic region. Keys and diagnoses. Part 2. Pupae. Ent. stand. Suppl. 28, pp 147–296

  • Coulson SJ, Refseth D (2004) The terrestrial and freshwater invertebrate fauna of Svalbard (and Jan Mayen). In Prestrud P, Strøm H, Goldman H (ed.) A catalogue of the terrestrial and marine animals of Svalbard. Skrifter 201, Norwegian Polar Institute, Tromsø, pp 57–122

  • Coulson SJ, Convey P, Aakra K, Aarvik L, Ávila-Jiménez ML, Babenko A et al (2014) The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol Biochem 68:440–470

    Article  CAS  Google Scholar 

  • Culp JM, Goedkoop W, Lento J, Christoffersen KS et al (2012) Arctic freshwater biodiversity monitoring plan. CAFF Monitoring Series Report, no. 7

  • De Smet WH, van Rompu EA (1994) Rotifera and Tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belg J Zool 124:27–37

    Google Scholar 

  • Dimante-Deimantovica I., Novichkova A. Chertoprud, E. Walseng B (2018) New and previously known species of Copepoda and Cladocera (Crustacea) from Svalbard, Norway—who are they and where do they come from? Fauna Norv Accepted with minor revision

  • Dussart BH, Defaye D (1983) Répertoire mondial des Crustacés Copépodes des eaux intérieures. CNRS Bordeaux, Paris, Calanoïdes, p 224

    Google Scholar 

  • Halvorsen G, Gullestad N (1976) Freshwater Crustacea from some areas of Svalbard. Arch Hydrobiol 78:383–395

    Google Scholar 

  • Healy B (2007) New species of Marionina (Oligochaeta: Enchytraeidae) from a wave-exposed rocky shore in SE Ireland. J Nat Hist 30(9):1287–1295

    Article  Google Scholar 

  • Hessen DO (1996) Competitive trade-off strategies in Arctic Daphnia linked to melanism and UV-B stress. Polar Biol 16:573–579

    Article  Google Scholar 

  • Hessen DO, Walseng B (2008) The rarity concept and the commonness of rarity in freshwater zooplankton. Freshw Biol 53:2026–2035

    Article  Google Scholar 

  • Hessen DO, Tombre IM, van Geest G, Alfsnes K (2017) Global change and ecosystem connectivity: how geese link fields of central Europe to eutrophication of Arctic freshwaters. Ambio 46:1–40

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hodson A, Anesio A, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Holm TM, Koinig KA, Andersen T, Donali E, Hormes A, Klaveness D, Psenner R (2012) Rapid physicochemical changes in the high Arctic Lake Kongressvatn caused by recent climate change. Aquat Sci 74(3):385–395

    Article  CAS  Google Scholar 

  • Husmann S, Jacobi HU, Meijering MPD, Reise B (1978) Distribution and ecology of Svalbard’s Cladocera. Verh Internat Verein Limnol 20:2452–2456

    Google Scholar 

  • Ims RA, Alsos IG, Fuglei E, Pedersen ÅØ, Yoccoz NG (2014) An Assessment of MOSJ: The state of the terrestrial environment in Svalbard. Report series/Norwegian Polar Institute, vol 144, p 41

  • Incagnone G, Marrone F, Barone R, Robba L, Naselli-Flores L (2015) How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiol 750(1):3–123

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (ed) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jersabek CD, Brancelj A, Stoch F, Schabetsberger R (2001) Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiol 453(454):309–324

    Article  Google Scholar 

  • Jørgensen I, Eie JA (1993) Utbredelsen av zooplankton, bunndyr og fisk i innsjøer og dammer på Moselhalvøya, Svalbard. NINA forskningsrapport 045:1–25

    Google Scholar 

  • König M, Kohler J, Nuth C (2013) Glacier Area Outlines—Svalbard. Norwegian Polar Institute. https://doi.org/10.21334/npolar.2013.89f430f8

  • Kubícek F, Terek J (1991) Zooplankton Svalbardu (Spicbergy). Biológia (Bratislava) 46:873–879

    Google Scholar 

  • Lods-Crozet B, Lencioni V, Brittain JE, Marziali L, Rossaro B (2007) Contrasting chironomid assemblages in two high Arctic streams on Svalbard. Fund Appl Limnol 170(3):211–222

    Article  Google Scholar 

  • Luoto TP, Oksman M, Ojala AEK (2015) Climate change and bird impact as drivers of High Arctic pond Deterioration. Polar Biol 38:357–368

    Article  Google Scholar 

  • Majdi N, Traunspurger W (2015) Free-living nematodes in the freshwater food web: a review. J Nematol 47(1):28–44

    PubMed  PubMed Central  Google Scholar 

  • Makarchenko EA (2001) Chironomidae. In: Key to freshwater invertebrates of Russia and adjacent lands, vol 4, pp 210–295

  • Novichkova A, Chertoprud E, Gıslason G (2014) Freshwater Crustacea (Cladocera, Copepoda) of Iceland: taxonomy, ecology, and biogeography. Polar Biol 37:1755–1767

    Article  Google Scholar 

  • Økland RH, Eilertsen O (1994) Canonical correspondence analysis with variation partitioning: some comments and an application. J Veg Sci 5:117–126

    Article  Google Scholar 

  • Olofsson O (1918) Studien über de Süsswasserfauna Spitzbergens. Beitrag zur Systematik, Biologie under Tiergeographie der Crustaceen und Rotatorien. Zoologiska Bidrag från Uppsala 6, p 648

  • Pugh PJA, McInnes SJ (1998) The origin of Arctic terrestrial and freshwater tardigrade. Polar Biol 19:177–182

    Article  Google Scholar 

  • Quinlan R, Douglas MSV, Smol JP (2005) Food web changes in arctic ecosystems related to climate warming. Glob Change Biol 11:1381–1386

    Article  Google Scholar 

  • Rautio M, Dufresne F, Laurion I, Bonilla S, Vincent WF, Christoffersen KS (2011) Shallow freshwater ecosystems of the circumpolar Arctic. Ecoscience 18:204–222

    Article  Google Scholar 

  • Sarnelle O, Wilson A-E (2005) Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol Oceanogr 50:1565–1570

    Article  Google Scholar 

  • Smol JP, Douglas MSV (2007) Crossing the final ecological threshold in high Arctic ponds. Proc Natl Acad Sci 104:12395–12397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smol JP, Wolfge A, Birks HJB, Douglas MSV, Jones VJ et al (2005) Climate-driven regime shifts in the biological communities of arctic lakes. PNAS 102(12):4397–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song SJ, Park J, Kwon B-O, Ryu J, Khim JS (2012) Ecological checklist of the marine brackish-water harpacticoid copepod fauna in Korean waters. Zool Stud 51:1397–1410

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: Software for ordination, version 5.0. Microcomputer Power Ithaca, USA, p 496

  • Thor S (1930) Beiträge zur Kenntnis der invertebraten Fauna von Svalbard. Skrifter om Svalbard og Ishavet 27:1–156

    Google Scholar 

  • Timm T (2009) A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia. 66:1–235

    Google Scholar 

  • van Geest GJ, Hessen DO, Spierenburg P, Dahl-Hansen GA, Christensen G, Faerovig PJ, Brehm M, Loonen MJ, Van Donk E (2007) Goose-mediated nutrient enrichment and planktonic grazer control in Arctic freshwater ponds. Oecologia 153(3):653–662

    Article  PubMed  Google Scholar 

  • Velle G, Kongshavn K, Birks HJB (2011) Minimizing the edge-effect in environmental reconstructions by trimming the calibration set: Chironomid-inferred temperatures from Spitsbergen. The Holocene 21(3):417–440

    Article  Google Scholar 

  • Vergilino R, Markova S, Ventura M, Manca M, Dufresne F (2011) Reticulate evolution of the Daphnia pulex complex as revealed by nuclear markers. Mon Ecol 20(6):1191–1207

    Article  CAS  Google Scholar 

  • Walseng B, Halvorsen G, Schartau AK, Hessen DO (2006) The concept of zooplankton; major contribution from littoral species to species richness in lakes. Limnol Oceanogr 51(6):2600–2606

    Article  Google Scholar 

  • Waterkeyn A, Vanschoenwinkel B, Elsen S, Anton-Pardo M, Grillas P, Brendonck L (2010) Unintentional dispersal of aquatic invertebrates via footwear and motor vehicles in a Mediterranean wetland area. Aquat Conserv 20:580–587

    Article  Google Scholar 

  • Weider L, Hobaek A (1994) Molecular biogeography of clonal lineages in a high-Arctic apomictic Daphnia complex. Mol Ecol 3:497–506

    Article  CAS  PubMed  Google Scholar 

  • Wełnicz W, Grohme MA, Kaczmarek L, Schill RO, Frohme M (2011) Anhydrobiosis in tardigrades—the last decade. J Insect Physiol 57(5):577–583

    Article  CAS  PubMed  Google Scholar 

  • Wiederholm T (ed) (1983) Chironomidae of the Holarctic region. Keys and diagnoses. Part. 1. Larvae//Ent. Scand. Suppl. 19. Lund, p 451

  • Xu L, Myneni RB, Chapin FS III, Callaghan TV et al (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Change 3:581–586

    Article  Google Scholar 

  • Zawierucha K, Zmudczyńska-Skarbek K, Kaczmarek L, Wojczulanis-Jakubas K (2016) The influence of a seabird colony on abundance and species composition of water bears (Tardigrada) in Hornsund (Spitsbergen, Arctic). Polar Biol 39(4):713–723

    Article  Google Scholar 

  • Zawisza E, Szeroczsyska K (2011) Cladocera species composition in lakes in the area of the Hornsund Fjord (Southern Spitsbergen)—preliminary results. Knowl Manag Aquat Ecosyst 402:4

    Article  Google Scholar 

Download references

Acknowledgements

This study was a joint campaign among the Norwegian and Russian researchers. Both partners were involved in preparing the study design, as well as participating in meetings, fieldwork (2014 and 2015), and analyzing/reporting of collected material. The authors owe their thanks to the UNIS (the University Centre in Svalbard), the NPI (the Norwegian Polar Institute), the Governor of Longyearbyen, and all the people in Barentsburg and Pyramiden for their valuable support during fieldwork. Thanks also are due to Olga L. Makarova who identified mites. The study of ecology and taxonomy of Cyclopoida (Copepoda) was supported by the program, “Scientific bases for the creation of a national depository bank of living systems of the Russian Science Foundation [Grant Number 14-50-00029].” The study of ecology and taxonomy of Harpacticoida (Copepoda) was supported by the Russian Foundation for Basic Research [Grant Number 17-04-00337-a]. Further, this study was supported by the Norwegian Institute for Nature Research (NINA) and the Research Council of Norway projects: “Effect of climate change and related stressors on fresh and brackish water ecosystems in Svalbard [227024]” and “The effect of nutrient input from migrating birds on the succession of freshwater communities of different age in Svalbard [246726].”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Walseng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Supplementary material 2 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walseng, B., Jensen, T., Dimante-Deimantovica, I. et al. Freshwater diversity in Svalbard: providing baseline data for ecosystems in change. Polar Biol 41, 1995–2005 (2018). https://doi.org/10.1007/s00300-018-2340-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2340-3

Keywords

Navigation