Skip to main content
Log in

Patterns in the distribution and abundance of sea anemones off Dumont d’Urville Station, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Knowledge of ecological interactions is integral for informed management, especially in the rapidly changing Antarctic marine ecosystem. Nonetheless, even basic ecological relationships are unknown for most benthic species, including conspicuous predatory species such as sea anemones. The aim of this study is to understand the ecology of sea anemones in the Terre Adélie region. Using video footage collected by remote operated vehicle (ROV), we examined sea anemone distribution and abundance in relation to predator and prey abundance, presence of other taxa and habitat structure. The ROV was deployed over ten different transects with depths ranging from 32 to 251 m. A total of 332 sea anemones were observed across 6.6 km2 of seabed surveyed. We compared sea anemone abundance with habitat type and substrate attachment. Multivariate analysis in PRIMER was used to examine community composition. Sea anemone density was not significantly associated with habitat types. However, sea anemones were associated with the biogenic substrates, ascidians and bryozoans. This association suggests a potential future vulnerability for Antarctic sea anemones if bryozoan and ascidian distributions are impacted by climate change-associated ecosystem disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amsler CD, McClintock JB, Baker BJ (1999) An Antarctic feeding triangle: defensive interactions between macroalgae, sea urchins, and sea anemones. Mar Ecol Prog Ser 183:105–114

    Article  Google Scholar 

  • Atalah J, Bennett H, Hopkins GA, Forrest BM (2013) Evaluation of the sea anemone anthothoe albocincta as an augmentative biocontrol agent for biofouling on artificial structures. Biofouling 29:559–571

    Article  Google Scholar 

  • Ayre DJ, Grosberg RK (1995) Aggression, habituation, and clonal coexistence in the sea-anemone Anthopleura elegantissima. Am Nat 146:427–453

    Article  Google Scholar 

  • Baird HP, Stark JS (2014) Spatial and temporal heterogeneity in the distribution of an Antarctic amphipod and relationship with the sediment. Mar Ecol Prog Ser 502:169–183

    Article  Google Scholar 

  • Baird HP, Miller KJ, Stark JS (2012) Genetic population structure in the Antarctic benthos: insights from the widespread amphipod, Orchomenella franklini. PLoS ONE 7:1–10

    Google Scholar 

  • Bennett JR, Shaw JD, Terauds A, Smol JP, Aerts R, Bergstrom DM, Blais JM, Cheung WWL, Chown SL, Lea MA, Nielsen UN, Pauly D, Reimer KJ, Riddle MJ, Snape I, Stark JS, Tulloch VJ, Possingham HP (2015) Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Front Ecol Environ 13:316–324

    Article  Google Scholar 

  • Bocharova ES, Kozevich IA (2011) Modes of reproduction in sea anemones (Cnidaria: Anthozoa). Biol Bull 38:849–860

    Article  Google Scholar 

  • Braby CE, Pearse VB, Vrijenhoek RC, Bain BA (2009) Pycnogonid-cnidarian interactions in the deep Monterey Submarine Canyon. Integr Comp Biol 49:E203

    Google Scholar 

  • Brueggeman P (1998) Cnidaria—Anthozoa: Anemones, soft coral: Underwater field guide to Ross Island and McMurdo Sound. Antarctica, The National Science Foundation

    Google Scholar 

  • Carlgren O (1899) Zoantharien. Hamburger Magalaensische Sammelreise 4:1–48

    Google Scholar 

  • Carlgren O (1927) Actiniaria and Zoantharia. In: Further zoological results of the Swedish Antarctic expedition 1901–1903, vol 2. Kungl. Boktryckeriet. P. A. Norstedt and Söner, Stockholm

  • Carlgren O (1949) A survey of the Ptychodactiaria, Corallimorpharia and Actiniaria, volume 1, no.1. In: Svenska vetenskapsakademien, Stockholm handlingar; 4, ser. Almqvist and Wiksells Boktryckeri AB, Stockholm

  • Carlgren O, Stephenson T (1929) Actiniaria: volume 9, pt. 2, zoology and botany. Australasian Antarctic expedition, 1 scientific reports: Series C. Government Printer, Sydney

  • Causse R, Ozouf-Costaz C, Koubbi P, Lamy D, Eleaume M, Dettai A, Duhamel G, Busson F, Pruvost P, Post A, Beaman RJ, Riddle MJ (2011) Demersal ichthyofaunal shelf communities from the Dumont d’Urville Sea (East Antarctica). Polar Sci 5:272–285

    Article  Google Scholar 

  • Clark GF, Stark JS, Johnston EL, Runcie JW, Goldsworthy PM, Raymond B, Riddle MJ (2013) Light driven tipping points in polar ecosystems. Glob Chang Biol 19:3749–3761

    Article  Google Scholar 

  • Clark GF, Raymond B, Riddle MJ, Stark JS, Johnston EL (2015) Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecol 40:482–491

    Article  Google Scholar 

  • Clark GF, Stark JS, Palmer AS, Riddle MJ, Johnston EL (2017) The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities. PLoS ONE 12:1

    Google Scholar 

  • Clarke KR, Gorley RN (2015) Primer v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Constable AJ et al (2014) Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob Chang Biol 20:3004–3025

    Article  Google Scholar 

  • Dayton PK, Robilliard GA (1970) Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica, vol 1. Academic Press, London

    Google Scholar 

  • Dunn DF (1983) Some Antarctic and Sub-Antarctic sea anemones (Coelenterata–Ptychodactiaria and Actiniaria) vol 39, paper 1 Biology of the Antarctic seas; Antarctic research series. American Geophysical Union, Washington, DC

    Google Scholar 

  • Fautin DG (1984) More Antarctic and Sub-Antarctic sea anemones (Coelenterata: Corallimorpharia and Actiniaria) vol 41, paper 1 Biology of the Antarctic seas; Antarctic research series. American Geophysical Union, Washington, DC

    Google Scholar 

  • Fautin DG (1988) Anthozoan dominated benthic environments. Proc 6th Int Coral Reef Symp 3:231–236

    Google Scholar 

  • Fisher RA (1970) Statistical methods for research workers. Oliver and Boyd 1954, Edinburgh

  • Goodwill R, Roger H, Fautin DG, Furey J, Daly M (2009) A sea anemone symbiotic with gastropods of eight species in the Mariana Islands. Micronesica 41:117–130

    Google Scholar 

  • Griffiths HJ, Linse K, Barnes DKA (2008) Distribution of macrobenthic taxa across the Scotia Arc, Southern Ocean. Antarct Sci 20:213–226

    Article  Google Scholar 

  • Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564

    Article  Google Scholar 

  • Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarct Sci 19:165–182

    Article  Google Scholar 

  • Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol 20:229–247

    Article  Google Scholar 

  • Gutt J, Cummings V, Dayton P, Isla E, Jentsch A, Schiaparelli S (2015) Antarctic marine animal forests: three-dimensional communities in Southern Ocean ecosystems. In: Rossi S, Bramanti L, Gori A, del Valle COS (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 1–30

    Google Scholar 

  • Hoffman JI, Clarke A, Linse K, Peck LS (2011) Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar Biol 158:287–296

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  CAS  Google Scholar 

  • Hughes TP et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  Google Scholar 

  • Jansen J, Hill NA, Dunstan PK, McKinlay J, Summer MD, Post AL, Eleaume MP, Armand LK, Warnock JP, Galton-Fenzi BK, Johnson CR (2018) Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nat Ecol Evol 2:71–80

    Article  Google Scholar 

  • Kersken D, Feldmeyer B, Janussen D (2016) Sponge communities of the Antarctic Peninsula: influence of environmental variables on species composition and richness. Polar Biol 39:851–862

    Article  Google Scholar 

  • Knox GA (2007) Biology of the Southern Ocean. CRC, Hoboken

    Google Scholar 

  • Ledoux JB, Tarnowska K, Gerald K, Lhuillier E, Jacquemin B, Weydmann A, Feral JP, Chenuil A (2012) Fine-scale spatial genetic structure in the brooding sea urchin Abatus cordatus suggests vulnerability of the Southern Ocean marine invertebrates facing global change. Polar Biol 35:611–623

    Article  Google Scholar 

  • McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. P Natl Acad Sci USA 105:18860–18864

    Article  CAS  Google Scholar 

  • Mercier A, Hamel J-F (2008) Nature and role of newly described symbiotic associations between a sea anemone and gastropods at bathyal depths in the NW Atlantic. J Exp Mar Biol Ecol 358:57–69

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:1–5

    Google Scholar 

  • Nelson ML, Craig SF (2011) Role of the sea anemone Metridium senile in structuring a developing subtidal fouling community. Mar Ecol Prog Ser 421:139–149

    Article  Google Scholar 

  • Oliver ECJ, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ, Mundy CN, Perkins-Kirkpatrick SE (2017) The unprecedented 2015/16 Tasman Sea marine heatwave. Nat Commun 8:16101

    Article  Google Scholar 

  • Ottaway J (1977) Predators of sea anemones. Tuatara 22:213

    Google Scholar 

  • Pearse JS, McClintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine-invertebrates, tempos, modes and timing. Am Zool 31:65–80

    Article  Google Scholar 

  • Peck LS, Barnes DKA, Willmott J (2005) Responses to extreme seasonality in food supply: diet plasticity in Antarctic brachiopods. Mar Biol 147:453–463

    Article  Google Scholar 

  • Peña Cantero AL (2014) Benthic hydroids (Cnidaria, Hydrozoa) from the continental shelf and slope off Queen Mary Coast (East Antarctica). Polar Biol 37:1711–1731

    Article  Google Scholar 

  • Peña Cantero AL, Manjon-Cabeza ME (2014) Hydroid assemblages from the Bellingshausen Sea (Antarctica): environmental factors behind their spatial distribution. Polar Biol 37:1733–1740

    Article  Google Scholar 

  • Post AL, O’Brien PE, Beaman RJ, Riddle MJ, De Santis L (2010) Physical controls on deep water coral communities on the George V Land slope, East Antarctica. Antarct Sci 22:371–378

    Article  Google Scholar 

  • Poulin E, Feral JP (1995) Pattern of spatial-distribution of a brood-protecting schizasterid echinoid, Abatus cordatus, endemic to the Kerguelen Islands. Mar Ecol Prog Ser 118:179–186

    Article  Google Scholar 

  • Rimondino C, Torre L, Sahade R, Tatian M (2015) Sessile macro-epibiotic community of solitary ascidians, ecosystem engineers in soft substrates of Potter Cove, Antarctica. Polar Res 34:9

    Article  Google Scholar 

  • Rodriguez E, Fautin DG (2014) Chapter 5.8. Antarctic hexacorals (Cnidaria, Anthozoa, Hexacorallia). In: De Broyer C et al (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 113–116

    Google Scholar 

  • Rodriguez E, López-González P (2008) The gastropod-symbiotic sea anemone genus Isosicyonis Carlgren, 1927 (Actiniaria: Actiniidae): a new species from the Weddell Sea (Antarctica) that clarifies the taxonomic position of the genus. Sci Mar 72:73–86

    Article  Google Scholar 

  • Rodriguez E, Lopez-Gonzalez PJ, Gilib JM (2007) Biogeography of Antarctic sea anemones (Anthozoa, Actiniaria): what do they tell us about the origin of the Antarctic benthic fauna? Deep-Sea Res PTII 54:1876–1904

    Article  Google Scholar 

  • Rodriguez E, Orejas C, Lopez-Gonzalez PJ, Gili JM (2013) Reproduction in the externally brooding sea anemone Epiactis georgiana in the Antarctic Peninsula and the Weddell Sea. Mar Biol 160:67–80

    Article  Google Scholar 

  • Roule L (1909) Hexactinides Expedition. Antarctique Française 1903–1905:1–19

    Google Scholar 

  • Sahade R et al (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv 1:10

    Article  Google Scholar 

  • Sebens KP (1981) The allometry of feeding, energetics, and body size in 3 sea-anemone species. Biol Bull 161:152–171

    Article  Google Scholar 

  • Shick JM (1991) A functional biology of sea anemones. In: Calow P (ed) Functional biology series. Chapman & Hall, Melbourne

  • Stark JS (2000) The distribution and abundance of soft-sediment macrobenthos around Casey Station, East Antarctica. Polar Biol 23:840–850

    Article  Google Scholar 

  • Stark JS, Kim SL, Oliver JS (2014) Anthropogenic disturbance and biodiversity of marine benthic communities in Antarctica: a regional comparison. PLoS ONE 9:1–24

    Google Scholar 

  • Stephenson T (1910) 1918), Coelenterata: part I—Actiniaria. Natural history reports on British Antarctic (“Terra Nova”. Expedition 5:1–68

    Google Scholar 

  • Stephenson T (1920) On the classification of Actiniaria: part I. Q J Microsc Sci 64:425–574

    Google Scholar 

  • Turner J et al (2013) Antarctic climate change and the environment: an update. Polar Rec 50:237–259

    Article  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573

    Article  CAS  Google Scholar 

  • Wood ACL, Probert PK, Rowden AA, Smith AM (2012) Complex habitat generated by marine bryozoans: a review of its distribution, structure, diversity, threats and conservation. Aquat Conserv 22:547–563

    Article  Google Scholar 

Download references

Acknowledgements

We thank the research programme led by Guillaume Lecointre, REVOLTA 1124 (2009-2013) supported by the French polar institute “Institut Paul-Émile Victor” (IPEV) and the Muséum national d’Histoire naturelle (MNHN). We would also like to thank the Département du Finistére for providing the ROV and to Océanopolis for the camera. We thank also the ROV pilot Alain Pottier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Watson.

Ethics declarations

Conflict of interest

There are no conflicts of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, L.A., Stark, J.S., Johnstone, G.J. et al. Patterns in the distribution and abundance of sea anemones off Dumont d’Urville Station, Antarctica. Polar Biol 41, 1923–1935 (2018). https://doi.org/10.1007/s00300-018-2332-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2332-3

Keywords

Navigation