Advertisement

Polar Biology

, Volume 41, Issue 7, pp 1505–1519 | Cite as

Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities

  • Tiago R. Silva
  • Alysson W. F. Duarte
  • Michel R. Z. Passarini
  • Ana Lucia T. G. Ruiz
  • Caio Haddad Franco
  • Carolina Borsoi Moraes
  • Itamar Soares de Melo
  • Rodney A. Rodrigues
  • Fabiana Fantinatti-Garboggini
  • Valéria Maia Oliveira
Original Paper

Abstract

Microorganisms dominate most of Antarctic ecosystems and play a crucial role in their functioning. They are called extremophilic microorganisms with unique and versatile metabolic properties with possible biotechnological applications in several areas. The aim of the present study was to identify psychrotolerant microorganisms from Antarctic continent samples and to screen them for antimicrobial effects. Phylogenetic analyses revealed that most isolates were closely related to recognized species, including those recovered previously from Antarctica, which belonged to the major phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria (classes Alpha, Beta, and Gammaproteobacteria). A total of 326 bacterial isolates, distributed in 39 different genera, were recovered and identified based on sequencing of the 16S rRNA gene. The main representative genera were Arthrobacter, Psychrobacter, Pseudoalteromonas, and Rhodococcus. Antimicrobial screening revealed fifteen isolates capable of inhibiting growth of at least one of the indicator strains: Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. One psychrotolerant bacterium, Pseudomonas sp. isolate 99, showed a broad antimicrobial range, in addition to antiproliferative and antiparasitic activity. Overall, the small number of antibiotic-producing isolates obtained and the weakness of their inhibition halos corroborated previous findings suggesting that cold-loving bacteria from Antarctica are not as good as their relatives from mesophilic environments for antimicrobial prospecting. Nonetheless, antiproliferative and antiparasitic results observed are promising and suggest that there is an untapped wealth in Antarctic environments for bioprospecting compounds with pharmaceutical potential application.

Keywords

Bioprospecting Bioactive compounds Cold environments 16S rRNA genes Pseudomonas 

Notes

Acknowledgements

We would like to thank Prof. Luis Henrique Rosa, coordinator of the MycoAntar Project (CNPq), and the Brazilian Antarctic Program for making the sampling feasible in the three expeditions OPERANTAR XXXII (summer 2013/2014), OPERANTAR XXXIII (summer 2014/2015), and OPERANTAR XXXIV (summer 2015/2016). The authors are also grateful to FAPESP for financial funding (process numbers 2014/17936-1; 2016/05640-6).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

300_2018_2300_MOESM1_ESM.docx (666 kb)
Supplementary material 1 (DOCX 666 kb)

References

  1. Anan`Ina LN, Yastrebova OV, Demakov VA, Plotnikova EG (2011) Naphthalene-degrading bacteria of the genus Rhodococcus from the Verkhnekamsk salt mining region of Russia. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 100:309–316.  https://doi.org/10.1007/s10482-011-9580-3 CrossRefGoogle Scholar
  2. Anthony BF, Giuliano DM, Oh W et al (1972) Nursery outbreak of staphylococcal scalded skin syndrome. Am J Dis Child 124:41.  https://doi.org/10.1001/archpedi.1972.02110130043006 CrossRefPubMedGoogle Scholar
  3. Bakermans C, Ayala-del-Río HL, Ponder MA et al (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291.  https://doi.org/10.1099/ijs.0.64043-0 CrossRefPubMedGoogle Scholar
  4. Belgini DRB, Dias RS, Siqueira VM et al (2014) Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages. World J Microbiol Biotechnol 30:2689–2700.  https://doi.org/10.1007/s11274-014-1693-1 CrossRefPubMedGoogle Scholar
  5. Białkowska AM, Cieśliński H, Nowakowska KM et al (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191:825–835.  https://doi.org/10.1007/s00203-009-0509-4 CrossRefPubMedGoogle Scholar
  6. Bowman JP (2004) Psychrophilic prokaryote structural-functional relationships, biogeography and evolution within marine sediment. Cell Mol Biol 50:503–515PubMedGoogle Scholar
  7. Bowman JP, McCammon SA, Brown MV et al (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078PubMedPubMedCentralGoogle Scholar
  8. Bruntner C, Binder T, Pathom-aree W et al (2005) Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot (Tokyo) 58:346–349.  https://doi.org/10.1038/ja.2005.43 CrossRefGoogle Scholar
  9. Busse HJ, Wieser M (2014) The genus Arthrobacter. In: The Prokaryotes: Actinobacteria. pp 105–132Google Scholar
  10. Carr SA, Vogel SW, Dunbar RB et al (2013) Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica. Geobiology 11:377–395.  https://doi.org/10.1111/gbi.12042 CrossRefPubMedGoogle Scholar
  11. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotech.  https://doi.org/10.1016/S0958-1669(02)00317-8 PubMedCrossRefGoogle Scholar
  12. Chong CW, Convey P, Pearce DA, Tan IKP (2012) Assessment of soil bacterial communities on Alexander Island (in the maritime and continental Antarctic transitional zone). Polar Biol 35:387–399.  https://doi.org/10.1007/s00300-011-1084-0 CrossRefGoogle Scholar
  13. Coura JR (2015) The main sceneries of chagas disease transmission. The vectors, blood and oral transmissions—a comprehensive review. Mem Inst Oswaldo Cruz 110:277–282.  https://doi.org/10.1590/0074-0276140362 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deming JW (2002a) Psychrophiles and polar regions. TL-5. Curr Opin Microbiol 5 VN-re:301–309.  https://doi.org/10.1016/s1369-5274(02)00329-6
  15. Deming JW (2002b) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309CrossRefPubMedGoogle Scholar
  16. Dsouza M, Taylor MW, Turner SJ, Aislabie J (2015) Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genomics 16:1–18.  https://doi.org/10.1186/s12864-015-1220-2 CrossRefGoogle Scholar
  17. Dworkin M (2006) The Prokaryotes: Symbiotic Associations, Biotechnology, Applied Microbiology. In: The Prokaryotes. pp 1–184Google Scholar
  18. Eloff JN (1998) A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 64:711–713.  https://doi.org/10.1055/s-2006-957563 CrossRefPubMedGoogle Scholar
  19. Engelhardt K, Degnes KF, Kemmler M et al (2010) Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiovsis species. Appl Environ Microbiol 76:4969–4976.  https://doi.org/10.1128/AEM.00741-10 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eythorsdottir A, Omarsdottir S, Einarsson H (2016) Antimicrobial activity of marine bacterial symbionts retrieved from shallow water hydrothermal vents. Mar Biotechnol 18:293–300.  https://doi.org/10.1007/s10126-016-9695-7 CrossRefPubMedGoogle Scholar
  21. Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997) Enzymes from cold-adapted microorganisms. The class C beta-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244:186–191.  https://doi.org/10.1111/j.1432-1033.1997.00186.x CrossRefPubMedGoogle Scholar
  22. Finnerty WM (1992) The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol 46:193–218CrossRefPubMedGoogle Scholar
  23. Fong NJC, Burgess ML, Barrow KD, Glenn DR (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756.  https://doi.org/10.1007/s002530100739 CrossRefPubMedGoogle Scholar
  24. Ganzert L, Bajerski F, Mangelsdorf K et al (2011) Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from antarctic soil. Int J Syst Evol Microbiol 61:979–984.  https://doi.org/10.1099/ijs.0.021022-0 CrossRefPubMedGoogle Scholar
  25. Gerday C, Aittaleb M, Arpigny JL et al (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim. Biophys Acta Protein Struct Mol Enzymol 1342:119–131CrossRefGoogle Scholar
  26. Graumann P, Schröder K, Schmid R, Marahiel MA (1996) Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178:4611–4619CrossRefPubMedPubMedCentralGoogle Scholar
  27. Häggblom M, Margesin R (2005) Microbial life in cold ecosystems. FEMS Microbiol Ecol 53(1):1–2CrossRefGoogle Scholar
  28. Hancock RE (2000) Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs 9:1723–1729.  https://doi.org/10.1517/13543784.9.8.1723 CrossRefPubMedGoogle Scholar
  29. Harder T, Lau SCK, Dahms HU, Qian PY (2002) Isolation of bacterial metabolites as natural inducers for larval settlement in the marine polychaete Hydroides elegans (HASWELL). J Chem Ecol 28:2029–2043.  https://doi.org/10.1023/A:1020702028715 CrossRefPubMedGoogle Scholar
  30. Holmström C, Kjelleberg S, Baumann L et al (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293.  https://doi.org/10.1111/j.1574-6941.1999.tb00656.x CrossRefPubMedGoogle Scholar
  31. Huang JP, Swain AK, Thacker RW et al (2013) Bacterial diversity of the rock-water interface in an East Antarctic freshwater ecosystem, Lake Tawani(P). Aquat Biosyst 9:4.  https://doi.org/10.1186/2046-9063-9-4 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ichikawa T, Date M, Ishikura T, Ozaki A (1971) Improvement of kasugamycin-producing strain by the agar piece method and the prototroph method. Folia Microbiol (Praha) 16:218–224.  https://doi.org/10.1007/BF02884210 CrossRefGoogle Scholar
  33. Im JK, Ang SJ, Ee CL (2013) An Organic Solvent-Tolerant Alkaline Lipase from Cold-Adapted Pseudomonas mandelii: cloning, Expression, and Characterization. Biosci Biotechnol Biochem 77:320–323.  https://doi.org/10.1271/bbb.120733 CrossRefGoogle Scholar
  34. Ivanova V, Kolarova M, Aleksieva K et al (2007) Microbiaeratin, a new natural indole alkaloid from a Microbispora aerata strain, isolated from Livingston Island, Antarctica. Prep Biochem Biotechnol 37:161–168.  https://doi.org/10.1080/10826060701199122 CrossRefPubMedGoogle Scholar
  35. Ivanova V, Laatsch H, Kolarova M, Aleksieva K (2013) Structure elucidation of a new natural diketopiperazine from a Microbispora aerata strain isolated from Livingston Island, Antarctica. Nat Prod Res 27:164–170.  https://doi.org/10.1080/14786419.2012.665911 CrossRefPubMedGoogle Scholar
  36. Jensen WB (2007) The origin of the soxhlet extractor. J Chem Educ 84:1913.  https://doi.org/10.1021/ed084p1913 CrossRefGoogle Scholar
  37. Kennedy J, Marchesi JR, Dobson AD (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 7:27.  https://doi.org/10.1186/1475-2859-7-27 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kennedy J, Baker P, Piper C et al (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from irish waters. Mar Biotechnol 11:384–396.  https://doi.org/10.1007/s10126-008-9154-1 CrossRefPubMedGoogle Scholar
  39. Kim SJ, Shin SC, Hong SG et al (2012) Genome sequence of a novel member of the genus Psychrobacter isolated from antarctic soil. J Bacteriol 194:2403–2403CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  41. Leifert C, Li H, Chidburee S et al (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108.  https://doi.org/10.1111/j.1365-2672.1995.tb02829.x CrossRefPubMedGoogle Scholar
  42. Li R, Jiang Y, Wang X et al (2013) Psychrotrophic Pseudomonas mandelii CBS-1 produces high levels of poly-β-hydroxybutyrate. Springerplus 2:335.  https://doi.org/10.1186/2193-1801-2-335 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Liu J-T, Lu X, Liu X et al (2013) Bioactive natural products from the antarctic and arctic organisms. Mini Rev Med Chem 13:617–626.  https://doi.org/10.2174/1389557511313040013 CrossRefPubMedGoogle Scholar
  44. Lo Giudice A, Bruni V, Michaud L (2007) Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol 47:496–505.  https://doi.org/10.1002/jobm.200700227 CrossRefPubMedGoogle Scholar
  45. Lonhienne T, Mavromatis K, Vorgias CE et al (2001) Cloning, sequences, and characterization of two chitinase genes from the Antarctic Arthrobacter sp. Strain TAD20: isolation and partial characterization of the enzymes. J Bacteriol 183:1773–1779.  https://doi.org/10.1128/JB.183.5.1773-1779.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Luque de Castro MD, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389CrossRefPubMedGoogle Scholar
  47. Mageswari A, Subramanian P, Ravindran V et al (2015) Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mandelii. Environ Sci Pollut Res 22:5383–5394.  https://doi.org/10.1007/s11356-014-3735-5 CrossRefGoogle Scholar
  48. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361.  https://doi.org/10.1016/j.resmic.2010.12.004 CrossRefPubMedGoogle Scholar
  49. Margesin R, Gander S, Zacke G et al (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458.  https://doi.org/10.1007/s00792-003-0347-2 CrossRefPubMedGoogle Scholar
  50. Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94:77–99.  https://doi.org/10.1007/s00114-006-0162-6 CrossRefPubMedGoogle Scholar
  51. Margesin R, Schinner F, Marx JC, Gerday C (2008) Psychrophiles: From biodiversity to biotechnologyGoogle Scholar
  52. Margesin R, Schumann P, Zhang DC et al (2012) Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:397–402.  https://doi.org/10.1099/ijs.0.031138-0 CrossRefPubMedGoogle Scholar
  53. Melo IS, Souza WR, Silva LJ et al (2016) Antifungal activity of Pseudomonas frederiksbergensis CMAA 1323 isolated from the antarctic hair grass Deschampsia antarctica. Br Microbiol Res J 14:1–11.  https://doi.org/10.9734/BMRJ/2016/25314 CrossRefGoogle Scholar
  54. Mojib N, Philpott R, Huang JP et al (2010) Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 98:531–540.  https://doi.org/10.1007/s10482-010-9470-0 CrossRefGoogle Scholar
  55. Mojib N, Nasti TH, Andersen DT et al (2011) The antiproliferative function of violacein-like purple violet pigment (PVP) from an Antarctic Janthinobacterium sp. Ant5-2 in UV-induced 2237 fibrosarcoma. Int J Dermatol 50:1223–1233.  https://doi.org/10.1111/j.1365-4632.2010.04825.x CrossRefPubMedPubMedCentralGoogle Scholar
  56. Monks A, Scudiero D, Skehan P et al (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766.  https://doi.org/10.1093/jnci/83.11.757 CrossRefPubMedGoogle Scholar
  57. Moraes CB, Giardini MA, Kim H et al (2014) Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development. Sci Rep 4:4703.  https://doi.org/10.1038/srep04703 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Morita RY, Horikoshi K, Grant WD (1999) Extremophiles: microbial life in extreme environments. Bioscience 49:245.  https://doi.org/10.2307/1313521 CrossRefGoogle Scholar
  59. Muryoi N, Sato M, Kaneko S et al (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661–5671.  https://doi.org/10.1128/JB.186.17.5661-5671.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nakano MM, Zuber P (1990) Molecular biology of antibiotic production in Bacillus. Crit Rev Biotechnol 10:223–240.  https://doi.org/10.3109/07388559009038209 CrossRefPubMedGoogle Scholar
  61. Newman DJ, Hill RT (2006) New drugs from marine microbes: the tide is turning. J Indust Microbiol Biotechnol 33(7):539–544CrossRefGoogle Scholar
  62. Nichols D, Bowman J, Sanderson K et al (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246CrossRefPubMedGoogle Scholar
  63. Nichols CM, Bowman JP, Guezennec J (2005) Olleya marilimosa gen. nov., sp. nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean. Int J Syst Evol Microbiol 55:1557–1561.  https://doi.org/10.1099/ijs.0.63642-0 CrossRefPubMedGoogle Scholar
  64. O’Brien A, Sharp R, Russell NJ, Roller S (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48:157–167.  https://doi.org/10.1016/j.femsec.2004.01.001 CrossRefPubMedGoogle Scholar
  65. Pindi PK, Manorama R, Begum Z, Shivaji S (2010) Arthrobacter antarcticus sp. nov., isolated from an Antarctic marine sediment. Int J Syst Evol Microbiol 60:2263–2266.  https://doi.org/10.1099/ijs.0.012989-0 CrossRefPubMedGoogle Scholar
  66. Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156.  https://doi.org/10.1111/j.1472-765X.1989.tb00262.x CrossRefGoogle Scholar
  67. Prasad S, Manasa P, Buddhi S et al (2011) Antagonistic interaction networks among bacteria from a cold soil environment. FEMS Microbiol Ecol 78:376–385.  https://doi.org/10.1111/j.1574-6941.2011.01171.x CrossRefPubMedGoogle Scholar
  68. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedPubMedCentralGoogle Scholar
  69. Rezaee M, Assadi Y, Milani Hosseini M-R et al (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1–9.  https://doi.org/10.1016/j.chroma.2006.03.007 CrossRefPubMedGoogle Scholar
  70. Rojas JL, Martín J, Tormo JR et al (2009) Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genomics 2:33–41.  https://doi.org/10.1016/j.margen.2009.03.005 CrossRefPubMedGoogle Scholar
  71. Romanenko LA, Zhukova NV, Rohde M et al (2003) Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int J Syst Evol Microbiol 53:125–131.  https://doi.org/10.1099/ijs.0.02234-0 CrossRefPubMedGoogle Scholar
  72. Romanenko LA, Tanaka N, Kalinovskaya NI, Mikhailov VV (2013) Antimicrobial potential of deep surface sediment associated bacteria from the Sea of Japan. World J Microbiol Biotechnol 29:1169–1177.  https://doi.org/10.1007/s11274-013-1276-6 CrossRefPubMedGoogle Scholar
  73. Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408PubMedPubMedCentralGoogle Scholar
  74. Rosenberg E, DeLong EF, Lory S, et al (2014) The Prokaryotes. In: The Prokaryotes: Actinobacteria. pp 1–1061Google Scholar
  75. Sánchez LA, Gómez FF, Delgado OD (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13:111–120.  https://doi.org/10.1007/s00792-008-0203-5 CrossRefPubMedGoogle Scholar
  76. Sant’Anna V, Correa APF, Motta A de S da, Brandelli A (2016) Liquid-liquid extraction of antimicrobial peptide P34 by aqueous two-phase and micellar systems. Prep Biochem Biotechnol  https://doi.org/10.1080/10826068.2016.1141301
  77. Schmidt F, Koch BP, Witt M, Hinrichs KU (2014) Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction. Geochim Cosmochim Acta 141:83–96.  https://doi.org/10.1016/j.gca.2014.06.009 CrossRefGoogle Scholar
  78. Shekh RM, Singh P, Singh SM, Roy U (2011) Antifungal activity of Arctic and Antarctic bacteria isolates. Polar Biol 34:139–143.  https://doi.org/10.1007/s00300-010-0854-4 CrossRefGoogle Scholar
  79. Shivaji S, Prakash JSS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95CrossRefPubMedGoogle Scholar
  80. Shivaji S, Begum Z, Shiva Nageswara Rao SS et al (2013) Antarctic ice core samples: culturable bacterial diversity. Res Microbiol 164:70–82.  https://doi.org/10.1016/j.resmic.2012.09.001 CrossRefPubMedGoogle Scholar
  81. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823.  https://doi.org/10.1038/nrc1951 CrossRefPubMedGoogle Scholar
  82. Spellberg B, Powers JH, Brass EP et al (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38:1279–1286.  https://doi.org/10.1086/420937 CrossRefPubMedGoogle Scholar
  83. Spellberg B, Bartlett JG, Gilbert DN (2013) The future of antibiotics and resistance. N Engl J Med 368:299–302.  https://doi.org/10.1056/NEJMp1215093 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Taton A, Grubisic S, Brambilla E et al (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169.  https://doi.org/10.1128/AEM.69.9.5157-5169.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tedesco P, Maida I, Esposito FP et al (2016) Antimicrobial activity of monoramnholipids produced by bacterial strains isolated from the Ross Sea (Antarctica). Mar Drugs.  https://doi.org/10.3390/md14050083 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Van Trappen S, Mergaert J, Van Eygen S et al (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610.  https://doi.org/10.1078/07232020260517742 CrossRefPubMedGoogle Scholar
  87. Vizioli J, Salzet M (2002) Antimicrobial peptides versus parasitic infections? Trends Parasitol 18:475–476.  https://doi.org/10.1016/S1471-4922(02)02428-5 CrossRefPubMedGoogle Scholar
  88. Vyverman W, Verleyen E, Wilmotte A et al (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113.  https://doi.org/10.1016/j.polar.2010.03.006 CrossRefGoogle Scholar
  89. Walker JE, Abraham EP (1970) Isolation of bacilysin and a new amino acid from culture filtrates of Bacillus subtilis. Biochem J 118:557–561CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wang F, Gai Y, Chen M, Xiao X (2009) Arthrobacter psychrochitiniphilus sp. nov., a psychrotrophic bacterium isolated from Antarctica. Int J Syst Evol Microbiol 59:2759–2762.  https://doi.org/10.1099/ijs.0.008912-0 CrossRefPubMedGoogle Scholar
  91. Webster NS, Bourne D (2007) Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol Ecol 59:81–94.  https://doi.org/10.1111/j.1574-6941.2006.00195.x CrossRefPubMedGoogle Scholar
  92. White PL, Wynn-Williams DD, Russell NJ (2000) Diversity of thermal responses of lipid composition in the membranes of the dominant culturable members of an Antarctic fellfield soil bacterial community. Antarct Sci 12:386–393.  https://doi.org/10.1017/S0954102000000432 CrossRefGoogle Scholar
  93. Wilmotte A, Vyverman W, Willems A, et al (2012) Antarctic Microbial Biodiversity: The importance of geographical and ecological factors. Sci A Sustaunable Dev 1–2Google Scholar
  94. World Health Organization (2013) Sustaining the drive to overcome the global impact of neglected tropical diseases: second WHO report on neglected tropical diseasesGoogle Scholar
  95. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395.  https://doi.org/10.1038/415389a CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
corrected publication May 2018

Authors and Affiliations

  • Tiago R. Silva
    • 1
    • 2
  • Alysson W. F. Duarte
    • 3
  • Michel R. Z. Passarini
    • 4
  • Ana Lucia T. G. Ruiz
    • 5
  • Caio Haddad Franco
    • 7
  • Carolina Borsoi Moraes
    • 7
  • Itamar Soares de Melo
    • 8
  • Rodney A. Rodrigues
    • 6
  • Fabiana Fantinatti-Garboggini
    • 2
  • Valéria Maia Oliveira
    • 2
  1. 1.Institute of BiologyCampinas State UniversityCampinasBrazil
  2. 2.Division of Microbial Resources, Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA)Campinas State UniversityCampinasBrazil
  3. 3.Federal University of Alagoas (UFAL)AlagoasBrazil
  4. 4.Federal University for Latin American IntegrationFoz do IguaçuBrazil
  5. 5.Division of Pharmacology and Toxicology, Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA)Campinas State UniversityCampinasBrazil
  6. 6.Division of Natural Products Chemistry, Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA)Campinas State UniversityCampinasBrazil
  7. 7.Brazilian Biosciences National LaboratoryNational Center for Research IN Energy and Materials (CNPEM)CampinasBrazil
  8. 8.Environmental Microbiology Laboratory (EMBRAPA)JaguariunaBrazil

Personalised recommendations