Skip to main content

Advertisement

Log in

Moderate elevations in temperature do not increase oxidative stress in oxidative muscles of Antarctic notothenioid fishes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Previous work in our laboratory showed that levels of oxidized proteins and/or lipids increase in heart ventricles of icefishes but not red-blooded notothenioids in response to exposure to their critical thermal maxima (CTMax). However, neither icefishes nor red-blooded fishes up-regulate their antioxidant defenses in response to exposure to CTMax, suggesting notothenioids may have lost the ability to alter antioxidant levels in response to stress during their evolution at cold temperature. Alternatively, exposure to CTMax may have been too short a thermal stress to induce increases in antioxidant levels. To address this question, the icefish Chionodraco rastrospinosus and the red-blooded notothenioid Notothenia coriiceps were maintained at either 0 ºC or 4 °C for 1 week. Levels of oxidized proteins and lipids, as well as transcript abundance and maximal activity of the antioxidants superoxide dismutase and catalase, were quantified in heart ventricle and pectoral adductor muscle. Although previous studies showed that the production of reactive oxygen species increases in response to warming in notothenioids, neither levels of oxidized proteins, lipids nor antioxidant activity increased in any tissue of either species in response to exposure to 4 °C. This suggests that notothenioids do not incur oxidative damage during prolonged, moderate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 138:405–415

    Article  PubMed  Google Scholar 

  • Abele D, Burlando B, Viarengo A, Pörtner HO (1998) Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Physiol B Biochem Mol Biol 120:425–435

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  CAS  PubMed  Google Scholar 

  • Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Bilyk KT, DeVries AL (2011) Heat tolerance and its plasticity in Antarctic fishes. Comp Biochem Physiol A Mol Integr Physiol 158:382–390

    Article  PubMed  Google Scholar 

  • Bilyk KT, Evans CW, DeVries AL (2012) Heat hardening in Antarctic notothenioid fishes. Polar Biol 35:1447–1451

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    CAS  PubMed  Google Scholar 

  • Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35:811–820

    Article  CAS  PubMed  Google Scholar 

  • Buckley BA, Somero GN (2009) cDNA microarray analysis reveals the capacity of the cold-adapted Antarctic fish Trematomus bernacchii to alter gene expression in response to heat stress. Polar Biol 32:403–415

    Article  Google Scholar 

  • Chen Z, Cheng CH, Zhang J, Cao L, Chen L, Zhou L, Jin Y, Ye H, Deng C, Dai Z, Xu Q, Hu P, Sun S, Shen Y (2008) Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci USA 105:12944–12949

    Article  CAS  PubMed  Google Scholar 

  • Coppe A, Agostini C, Marino IA, Zane L, Bargelloni L, Bortoluzzi S, Patarnello T (2013) Genome evolution in the cold: antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function. Genome Biol Evol 5:45–60

    Article  PubMed Central  PubMed  Google Scholar 

  • Crapo JD, McCord JM, Fridovich I (1978) Preparation and assay of superoxide dismutases. Method Enzymol 53:382–393

    Article  CAS  Google Scholar 

  • Crockett EL (2011) Antioxidant potential is positively correlated with mitochondrial enzyme activity in Antarctic and non-Antarctic notothenioid fishes. Polar Biol 34:113–118

    Article  Google Scholar 

  • Detrich HW III (1997) Microtubule assembly in cold-adapted organisms: functional properties and structural adaptations of tubulins from antarctic fishes. Comp Biochem Physiol A Mol Integr Physiol 118:501–513

    Article  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    Article  CAS  PubMed  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San Diego

    Google Scholar 

  • Enzor LA, Zippay ML, Place SP (2013) High latitude fish in a high CO2 world: synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comp Biochem Physiol A Mol Integr Physiol 164:154–161

    Article  CAS  PubMed  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481

    Article  CAS  PubMed  Google Scholar 

  • Franklin CE, Davison W, Seebacher F (2007) Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki. J Exp Biol 210:3068–3074

    Article  PubMed  Google Scholar 

  • Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542

    CAS  PubMed  Google Scholar 

  • Hemmingsen EA, Douglas EL (1972) Respiratory and circulatory responses in a hemoglobin-free fish, Chaenocepahlus aceratus, to changes in temperature and oxygen tension. Comp Biochem Physiol A Mol Integr Physiol 43:1031–1043

    Article  CAS  Google Scholar 

  • Hofmann EE, Klinck JM (1998) Thermohaline variability in the waters overlying the West Antarctic Peninsula Continental Shelf. In: Jacobs S, Weiss R (eds) Ocean, ice and atmosphere: interactions at the Antarctic continental margin, AGU Antarctic Research Series, vol 75. American Geophysical Union, Washington, pp 67–81

    Chapter  Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 203:2331–2339

    CAS  PubMed  Google Scholar 

  • IPCC (2001) Observed climate variability and change.  In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate CHANGE 2001: the scientific basics. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881

  • Jayasundara N, Healy TM, Somero GN (2013) Effects of temperature acclimation on cardiorespiratory performance of the Antarctic notothenioid Trematomus bernacchii. Polar Biol 36:1047–1057

    Article  Google Scholar 

  • Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean and their impact on global paleoceanography. J Geophys Res 82:3843–3860

    Article  CAS  Google Scholar 

  • Kiss AJ, Mirarefi AY, Ramakrishnan S, Zukoski CF, Devries AL, Cheng CH (2004) Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman. J Exp Biol 207:4633–4649

    Article  CAS  PubMed  Google Scholar 

  • Lannig G, Storch D, Pörtner HO (2005) Aerobic mitochondrial capacities in Antarctic and temperate eelpout (Zoarcidae) subjected to warm versus cold acclimation. Polar Biol 28:575–584

    Article  Google Scholar 

  • Levine RL, Wehr N, Williams JA, Stadtman ER, Shacter E (2000) Determination of carbonyl groups in oxidized proteins. Methods Mol Biol 99:15–24

    CAS  PubMed  Google Scholar 

  • Logue JA, de Vries AL, Fodor E, Cossins AR (2000) Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J Exp Biol 203:2105–2115

    CAS  PubMed  Google Scholar 

  • Mark FC, Lucassen M, Pörtner HO (2006) Thermal sensitivity of uncoupling protein expression in polar and temperate fish. Comp Biochem Physiol D Genomics Proteomics 1:365–374

    Article  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604

    Article  Google Scholar 

  • Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  PubMed  Google Scholar 

  • Mueller IA, Grim JM, Beers JM, Crockett EL, O’Brien KM (2011) Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes. J Exp Biol 214:3732–3741

    Article  CAS  PubMed  Google Scholar 

  • Mueller IA, Devor DP, Grim JM, Beers JM, Crockett EL, O’Brien KM (2012) Exposure to critical thermal maxima causes oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes. J Exp Biol 215:3655–3664

    Article  CAS  PubMed  Google Scholar 

  • O’Brien KM, Sidell BD (2000) The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes. J Exp Biol 203:1287–1297

    PubMed  Google Scholar 

  • O’Brien KM, Skilbeck C, Sidell BD, Egginton S (2003) Muscle fine structure may maintain the function of oxidative fibres in haemoglobinless Antarctic fishes. J Exp Biol 206:411–421

    Article  PubMed  Google Scholar 

  • Orczewska JI, Hartleben G, O’Brien KM (2010) The molecular basis of aerobic metabolic remodeling differs between oxidative muscle and liver of threespine sticklebacks in response to cold acclimation. Am J Physiol Regul Integr Comp Physiol 299:R352–R364

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Podrabsky JE, Somero GN (2006) Inducible heat tolerance in Antarctic notothenioid fishes. Polar Biol 30:39–43

    Article  Google Scholar 

  • Reeder BJ, Wilson MT (2005) Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease States. Curr Med Chem 12:2741–2751

    Article  CAS  PubMed  Google Scholar 

  • Robinson E, Davison W (2008) The Antarctic notothenioid fish Pagothenia borchgrevinki is thermally flexible: acclimation changes oxygen consumption. Polar Biol 31:317–326

    Article  Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850

    Article  CAS  PubMed  Google Scholar 

  • Seebacher F, Davison W, Lowe CJ, Franklin CE (2005) A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Biol Lett 1:151–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258

    Article  CAS  PubMed  Google Scholar 

  • Thorne MA, Burns G, Fraser KP, Hillyard G, Clark MS (2010) Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Mar Genomics 3:35–44

    Article  CAS  PubMed  Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PDJ, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Urschel MR, O’Brien KM (2008) High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis. J Exp Biol 211:2638–2646

    Article  CAS  PubMed  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:234–274

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the outstanding support from the Crew and Masters of the ARSV Laurence M. Gould and the Raytheon support staff at Palmer Station Antarctica. This research was supported by a Grant from the National Science Foundation (ANT 0741301) to K. OB. I. M. was supported in part by a University of Alaska Fairbanks (UAF) Center for Global Change Student Research Grant. K.D. was supported in part by a UAF Undergraduate Research and Mentorship Award from N.S.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin O’Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, I., Hoffman, M., Dullen, K. et al. Moderate elevations in temperature do not increase oxidative stress in oxidative muscles of Antarctic notothenioid fishes. Polar Biol 37, 311–320 (2014). https://doi.org/10.1007/s00300-013-1432-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1432-3

Keywords

Navigation