Polar Biology

, Volume 35, Issue 1, pp 39–51 | Cite as

Birds as marine–terrestrial linkages in sub-polar archipelagic systems: avian community composition, function and seasonal dynamics in the Cape Horn Biosphere Reserve (54–55°S), Chile

Original Paper


Marine environments are known to affect adjacent terrestrial biotic communities. In South America’s sub-Antarctic archipelago, birds are the most abundant and diverse terrestrial vertebrate assemblage. We hypothesized that birds would reflect a marine influence that would gradually decrease inland, expecting to find greater species richness, abundance, and biomass near the sea with decreases toward the island interior. We seasonally compared these parameters, with identified indicator species and assessed functional groups at 0, 150, and 300 m from the coast. Unexpectedly, we found a marked marine (0) and terrestrial (150–300) patterns for avian assemblages, rather than a gradient. In addition, seasonal patterns were warm (spring–summer) and cold (autumn–winter). The only parameter that displayed a true gradient was avian biomass in spring. During the cold season, higher values were observed in all variables for coastal assemblages, compared to inland sites. In the warm season, abundance and richness of coastal and terrestrial assemblages were similar, owing to migratory species. Milvago chimango was the only species abundant and frequent in both terrestrial and coastal systems, thereby indicating potential as a marine–terrestrial vector. Functionally, coastal assemblages were conformed of herbivores, carnivores, and scavengers, while terrestrial communities were made up of omnivores and insectivores. We conclude that the sea coast is a unique habitat in this archipelago, providing refuge for both marine and terrestrial sub-Antarctic birdlife particularly in the cold season. The relevance of the land/sea ecotone is poorly known, but important is given to high demand for the installation of salmon aquaculture facilities along the southern Chilean coastline.


Sub-Antarctic avifauna Ecotone Milvago chimango Trans-ecosystemic links 



We are grateful for the participation and support of numerous people in the design, collection and analysis of these data, especially the volunteers, staff and directors of the sub-Antarctic Biocultural Conservation Program (Universidad de Magallanes, Institute of Ecology and Biodiversity and University of North Texas). JCP acknowledges his master’s scholarship from the Institute of Ecology and Biodiversity and CONICYT through the Basal Financing Program (PFB-23) and the Millennium Scientific Initiative (P05-002) and the Rufford Small Grant Foundation, which helped finance the research as part of the project entitled Omora Bird Observatory: Long-Term Ornithological Studies and Conservation in the Cape Horn Biosphere Reserve, Chile (RSG 20.08.08). Birder’s Exchange also donated field equipment. This publication is a contribution to the Omora Ethnobotanical Park, which is a long-term socio-ecological research site (http://www.ieb-chile.cl/ltser) in the Cape Horn Biosphere Reserve.

Supplementary material

300_2011_1029_MOESM1_ESM.pdf (115 kb)
Supplementary material 1 (PDF 114 kb)
300_2011_1029_MOESM2_ESM.pdf (139 kb)
Supplementary material 2 (PDF 138 kb)


  1. Anderson WB, Polis GA (1998) Marine subsidies of island communities in the Gulf of California: evidence from stable carbon and nitrogen isotopes. Oikos 81:75–80CrossRefGoogle Scholar
  2. Anderson CB, Rozzi R (2000) Bird assemblages in the southernmost forests in the world: methodological variations for determining species composition. An Inst Patagonia Ser Cien Nat 28:89–100Google Scholar
  3. Anderson WB, Wait DA (2001) Subsidized island biogeography hypothesis: another new twist on an old theory. Ecol Lett 4:289–291CrossRefGoogle Scholar
  4. Anderson CB, Rozzi R, Likens GE, Gutiérrez JR, Poole AK, Armesto JJ (2008) Using long-term socio-ecological study sites to integrate research with society. Environ Ethics 30:295–312Google Scholar
  5. Arroyo MTK, Riveros M, Penaloza A, Cavieres L, Faggi AM (1996) History and regional patterns of the cool temperate rainforest flora of southern South America. In: RG Lawford, Alaback P, Fuentes ER (eds) High latitude rain forest and associated ecosystems of the west coast of the Americas: climate, hydrology, ecology and conservation. Springer, Berlin.Google Scholar
  6. Bancroft W, Roberts J, Garkaklis M (2005) Burrowing seabirds drive decreased diversity and structural complexity and increased productivity in insular-vegetation communities. Aust J Bot 53:231–241CrossRefGoogle Scholar
  7. Barrett K, Anderson WB, Wait DA, Grismer LL, Polis GA, Rose MD (2005) Marine subsidies alter the diet and abundance of insular and coastal lizard populations. Oikos 109:145–153CrossRefGoogle Scholar
  8. Bradley RA, Bradley DW (1993) Wintering shorebirds increase after kelp (Macrocystis) recovery. Condor 95:372–376CrossRefGoogle Scholar
  9. Camperi AR, Darrieu CA (2005) Aves del alto valle del Rio Negro, Argentina. Rev Mus Argent Cienc Nat 7:51–56Google Scholar
  10. Caron CM, Paton PWC (2007) Population trends and habitat use of Harlequin Ducks in Rhode Island. J Field Ornithol 78:254–262CrossRefGoogle Scholar
  11. Catenazzi A, Donnelly MA (2007) Role of supratidal invertebrates in the decomposition of beach-cast green algae (Ulva sp.). Mar Ecol Prog Ser 349:33–42CrossRefGoogle Scholar
  12. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  13. Couve E, Vidal C (2000) Birds of the Beagle Channel and Cape Horn. Fantástico Sur, Punta Arenas, ChileGoogle Scholar
  14. Darimont CT, Paquet PC, Reimchen TE (2009) Landscape heterogeneity and marine subsidy generate extensive intrapopulation niche diversity in a large terrestrial vertebrate. J Anim Ecol 78:126–133PubMedCrossRefGoogle Scholar
  15. de Magalhaes JP, Costa J, Toussaint O (2005) HAGR: the human ageing genomic resources. Nucleic Acids Res 33(Database Issue):D537–D543PubMedCrossRefGoogle Scholar
  16. Diario Electrónico de la Patagonia—Radio Polar (2008) Detienen entrega de concesiones acuícolas hasta que Magallanes defina el uso del borde costero. http://www.radiopolar.com/noticia_21425.html#. Accessed 25 June 2010
  17. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  18. Elgueta EI, Valenzuela J, Rau JR (2007) New insights into the prey spectrum of Darwin′s fox (Pseudalopex fulvipes Martin. 1837) on Chiloé Island, Chile. Mamm Biol 72:179–185CrossRefGoogle Scholar
  19. Ellis JC, Fariña JM, Witman JD (2006) Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J Anim Ecol 75:565–574PubMedCrossRefGoogle Scholar
  20. Forero M, Bortolotti G, Hobson K, Donazar J, Bertelloti M, Blanco G (2004) High trophic overlap within the seabird community of Argentinean Patagonia: a multiscale approach. J Anim Ecol 73:789–801CrossRefGoogle Scholar
  21. Gende SM, Edwards RT, Willson MF, Wipfli MS (2002) Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52:917–928CrossRefGoogle Scholar
  22. Granadeiro JP, Santos CD, Dias MP, Palmeirim JM (2007) Environmental factors drive habitat partitioning in birds feeding in intertidal flats: implications for conservation. Hydrobiologia 587:291–302CrossRefGoogle Scholar
  23. Harding JS, Hawke DJ, Holdaway RN, Winterbourn MJ (2004) Incorporation of marine-derived nutrients from petrel breeding colonies into stream food webs. Freshw Biol 49:576–586CrossRefGoogle Scholar
  24. Humphrey PS, Bridge D, Reynolds PW, Peterson RT (1970) Birds of Isla Grande (Tierra del Fuego). Preliminary Smithsonian Manual. Smithsonian Institution, WashingtonGoogle Scholar
  25. Ibarra JT, Rozzi R, Gilabert H, Anderson CB, McGehee SM, Bonacic C (2009a) Seasonal dynamics and distribution patterns of birds associated to sub-Antarctic wetlands in the Cape Horn Biosphere Reserve (54–55 degrees S), Chile. Ornitol Neotrop 20:321–337Google Scholar
  26. Ibarra JT, Fasola L, Macdonald DW, Rozzi R, Bonacic C (2009b) Invasive American mink Mustela vison in wetlands of the Cape Horn Biosphere Reserve, southern Chile: what are they eating? Oryx 43:87–90CrossRefGoogle Scholar
  27. Ibarra JT, Anderson CB, Altamirano T, Rozzi R, Bonacic C (2010) Diversity and singularity of the avifauna in the austral peat bogs of the Cape Horn Biosphere Reserve. Chile. Cienc Investig Agrar 37:29–43Google Scholar
  28. Ippi S, Anderson CB, Rozzi R, Elphick C (2009) Annual variation of abundance and composition in forest bird assemblages on Navarino Island, Cape Horn Biosphere Reserve, Chile. Ornitol Neotrop 20:231–245Google Scholar
  29. Jaksic FM, Feinsinger P (1991) Bird assemblages in temperate forests of North and South America: a comparison of diversity, dynamics, guild structure, and resource use. Rev Chil Hist Nat 64:491–510Google Scholar
  30. Jaramillo A, Burke P, Beadle D (2005) Aves de Chile. Ingoprint SA, BarcelonaGoogle Scholar
  31. Jiménez JE (2000) Effect of sample plot size and counting time on estimates of avian diversity and abundance in a Chilean rainforest. J Field Ornithol 71:66–87Google Scholar
  32. Marczak LB, Thompson RM, Richardson JS (2007) Meta-analysis: trophic level, habitat and productivity shape the food web effects of resource subsidies. Ecology 88:140–148PubMedCrossRefGoogle Scholar
  33. Martínez DE, González GE (2004) Las aves de Chile. nueva guía de campo. Ediciones del Naturalista. Imprenta Salesianos, SantiagoGoogle Scholar
  34. Naiman RJ, Décamps H (1997) The ecology of interfaces—riparian zones. Annu Rev Ecol Evol S 28:621–658CrossRefGoogle Scholar
  35. Owens IPF, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. PNAS 97:12144–12148PubMedCrossRefGoogle Scholar
  36. Paetzold A, Lee M, Post DM (2008) Marine resource flows to terrestrial arthropod predators on a temperate island: the role of subsidies between systems of similar productivity. Oecologia 157:653–659PubMedCrossRefGoogle Scholar
  37. Pimm S, Raven P, Peterson A, Sekercioglu CH, Ehrlich PR (2006) Human impacts on the rates of recent. present and future bird extinctions. PNAS 103:10941–10946PubMedCrossRefGoogle Scholar
  38. Pisano E (1980) Distribución y características de la vegetación del archipiélago del Cabo de Hornos. An Inst Patagonia Ser Cien Nat 11:192–224Google Scholar
  39. Pizarro JC (2010) Las aves como vínculo trans-ecosistémico y trans-disciplinario: las ciencias ecológicas y las éticas ambientales en la investigación, educación y la conservación en la Reserva de Biosfera Cabo de Hornos, Chile. Master in Science Thesis, Universidad de Magallanes, ChileGoogle Scholar
  40. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Evol S 28:289–316CrossRefGoogle Scholar
  41. Raya Rey A, Schiavini ACM (2000) Distribution, abundance and associations of seabirds in the Beagle Channel, Tierra del Fuego, Argentina. Polar Biol 23:338–345CrossRefGoogle Scholar
  42. Remsen JV Jr, Cadena CD, Jaramillo A, Nores M, Pacheco JF, Robbins MB, Schulenberg TS, Stiles FG, Stotz DF, Zimmer KJ (2009) A classification of the bird species of South America. American Ornithologists’ Union. http://www.museum.lsu.edu/~Remsen/SACCBaseline.html. Acceded 8 Jan 2010
  43. Rose MD, Polis GA (1998) The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79:998–1007CrossRefGoogle Scholar
  44. Rozzi R, Massardo F, Anderson CB, Berghoefer A, Mansilla A, Mansilla M, Plana J (2006) Reserva de Biosfera Cabo de Hornos. Ediciones de la Universidad de Magallanes, Punta Arenas, ChileGoogle Scholar
  45. Sabat P, Nespolo RF, Bozinovic F (2004) Water economy of three Cinclodes (Furnariidae) species inhabiting marine and freshwater ecosystems. Rev Chil Hist Nat 77:219–225CrossRefGoogle Scholar
  46. Sanchez-Pinero F, Polis GA (2000) Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology 81:3117–3132Google Scholar
  47. Schiavini ACM, Yorio P (1995) Distribution and abundance of seabird colonies in the Argentine Sector of the Beagle Channel, Tierra del Fuego. Mar Ornithol 23:39–46Google Scholar
  48. Schlatter RP, Riveros GM (1997) Historia natural del archipiélago Diego Ramírez, Chile. Ser Cient INACH 47:87–112Google Scholar
  49. Sekercioglu CH, Daily GL, Ehrlich PR (2004) Ecosystem consequences of bird declines. P Natl Acad Sci USA 101(52):18042–18047CrossRefGoogle Scholar
  50. Summers RW, Grieve A (1982) Diet, feeding behavior and food intake of the Upland Goose Chloephaga picta and the Ruddy-headed Goose C. rubidiceps in the Falkland Islands. J Appl Ecol 19:783–804CrossRefGoogle Scholar
  51. Tuhkanen S (1992) The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Bot Fenn 145:1–65Google Scholar
  52. Valenzuela JA (2002) Conducta territorial y alimentaria de la caranca (Cholephaga hybrida Molina. 1782) en el litoral pacífico de Chiloé insular. Ph.D. Dissertation, Universidad Austral de ChileGoogle Scholar
  53. Van Geest GS, Hessen DO, Spierenburg Dahl-HansenGAP, Christensen G, Faerovig PJ et al (2007) Goose-mediated nutrient enrichment and planktonic grazer control in arctic freshwater ponds. Oecologia 153:653–662PubMedCrossRefGoogle Scholar
  54. Venegas C (1981) Aves de las islas Wollaston y Bayly, Archipielago del Cabo de Hornos. An Inst Patagonia Ser Cien Nat 12:213–219Google Scholar
  55. Venegas C (1994) Aves de Magallanes. Ediciones de la Universidad de Magallanes, Punta Arenas, ChileGoogle Scholar
  56. Venegas C, Sielfeld W (1998) Catálogo de los vertebrados de la región de Magallanes y Antártica chilena. Ediciones Universidad de Magallanes, Punta ArenasGoogle Scholar
  57. Wiens JA, Stralberg D, Jongsomijit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. PNAS 106:19729–19736PubMedCrossRefGoogle Scholar
  58. Winder M, Schindler DE, Moore JW, Johnson SP, Palen WJ (2005) Do bears facilitate transfer of salmon resources to aquatic macroinvertebrates? Can J Fish Aquat Sci 62:2285–2293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. C. Pizarro
    • 1
    • 2
    • 3
    • 4
    • 5
  • C. B. Anderson
    • 1
    • 2
    • 3
    • 4
    • 5
  • R. Rozzi
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Omora Ethnobotanical ParkUniversidad de MagallanesPuerto Williams, Cape Horn Biosphere ReserveChile
  2. 2.Master’s of Science Program in Management and Conservation of Sub-Antarctic Ecosystems, Faculty of ScienceUniversidad de MagallanesPunta ArenasChile
  3. 3.Institute of Ecology and BiodiversitySantiagoChile
  4. 4.Sub-Antarctic Biocultural Conservation Program, Departments of Philosophy & Religion Studies and Biological SciencesUniversity of North TexasDentonUSA
  5. 5.Puerto Williams University CenterUniversidad de MagallanesPuerto WilliamsChile

Personalised recommendations