Skip to main content
Log in

Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water mass (max: PO4 3− 1.80 μmol L−1 and NO3 27.64 μmol L−1) was found between 70 and 200 m depth. Chlorophyll-a (Chl-a) values (max 14.24 μg L−1) were high; surface oxygen saturation ranged between 86 and 148%. Diatoms of the genera Nitzschia and Navicula and the prymnesiophyte Phaeocystis sp. were the most abundant taxa found. Mean daily primary production (Pc) estimated from nutrient consumption was 14.80 ± 0.17 mgC m−3 day−1. Pc was significantly correlated with total diatom abundance and Chl-a. Calculated ΔpCO2 (difference of the CO2 partial pressure between surface seawater and the atmosphere) was –30.5 μatm, which could have contributed to a net CO2 flux from the atmosphere to the sea and suggests the area has been a CO2 sink during the studied period. High phytoplankton biomass and production values were found in this freshly open area, suggesting its importance for biological CO2 pumping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355. doi:10.1038/nature04159

    Article  PubMed  CAS  Google Scholar 

  • Arrigo KR, van Dijken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res 108:L3271. doi:10.1029/2002JC001739

    Article  Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367. doi:10.1126/science.283.5400.365

    Article  PubMed  CAS  Google Scholar 

  • Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res 113:C08004. doi:10.1029/2007JC004551

    Article  CAS  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103. doi:10.1038/nature02996

    Article  PubMed  CAS  Google Scholar 

  • Bianchi F, Boldrin A, Cioce F, Dieckmann G, Kuosa H, Larsson AM, Nöthig EM, Sehlstedt PI, Socal G, Syvertsen EE (1992) Phytoplankton distribution in relation to sea ice, hydrography and nutrients in the northwestern Weddell Sea in early spring 1988 during EPOS. Polar Biol 12:225–235. doi:10.1007/BF00238264

    Article  Google Scholar 

  • Bouquegneau JM, Gieskes WWC, Kraay GW, Larsson AM (1992) Influence of physical and biological processes on the concentration of O2 and CO2 in the ice-covered Weddell Sea in the spring of 1988. Polar Biol 12:163–170. doi:10.1007/BF00238256

    Article  Google Scholar 

  • Buck KR, Garrison DL (1983) Protists from the ice-edge region of the Weddell Sea. Deep Sea Res 30:1261–1277. doi:10.1016/0198-0149(83)90084-5

    Article  Google Scholar 

  • Castro CG, Ríoz AF, Doval MD, Perez FF (2002) Nutrient utilization and chlorophyll distribution in the Atlanctic sector of the Southern ocean during austral summer 1995–96. Deep Sea Res Part II Top Stud Oceanogr 49:623–641. doi:10.1016/S0967-0645(01)00115-1

    Article  CAS  Google Scholar 

  • de la Mare WK (1997) Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records. Nature 389:57–60. doi:10.1038/37956

    Article  Google Scholar 

  • DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, Barry JP, VanWoert ML, Dunbar RB (2000) Rapid and early export of Phaeocystis antartica blooms in the Rose Sea, Antarctica. Nature 404:595–598. doi:10.1038/35007061

    Article  PubMed  CAS  Google Scholar 

  • Domack E, Ishman S, Leventer A, Sylva S, Willmott V, Huber B (2005) A chemotrophic ecosystem found beneath Antarctic ice shelf. EOS 86:269–272. doi:10.1029/2005EO290001

    Article  Google Scholar 

  • El-Sayed SZ, Taguchi S (1981) Primary production and standing crop of phytoplankton along the ice-edge in the Weddell Sea. Deep Sea Res 28:1017–1032. doi:10.1016/0198-0149(81)90015-7

    Article  CAS  Google Scholar 

  • Fryxell GA, Kendrick GA (1988) Austral spring microalgae across the Weddell Sea ice edge: spatial relationships found along a northward transect during AMERIEZ 83. Deep Sea Res A 35:1–20. doi:10.1016/0198-0149(88)90054-4

    Article  Google Scholar 

  • Garrison DL, Buck KR (1989) The biota of Antarctic pack ice in the Weddell sea and Antarctic Peninsula regions. Polar Biol 10:211–219. doi:10.1007/BF00238497

    Article  Google Scholar 

  • Gutt J, Starmans A (2003) Patchiness of the megabenthos at small scales: ecological conclusions by examples from polar shelves. Polar Biol 20:276–278

    Google Scholar 

  • Hoffmann EE, Klinck JM (1998) Hydrography and Circulation of the Antarctic continental shelf: 150°E to the Greenwich meridian. Sea 11:997–1042

    Google Scholar 

  • Hoppema M (2004) Weddell Sea turned from source to sink for atmospheric CO2 between pre-industrial time and present. Global Planet Change 40:219–231. doi:10.1016/j.gloplacha.2003.08.001

    Article  Google Scholar 

  • Hoppema M, Goeyens L (1999) Redfield behavior of carbon, nitrogen, and phosphorus depletions in Antarctic surface water. Limnol Oceanogr 44:220–224

    CAS  Google Scholar 

  • Hoppema M, Fahrbach E, Stoll MHC, de Baar HJW (1999) Annual uptake of atmospheric CO2 by the Weddell Sea derived from a surface layer balance, including estimations of entrainment and new production. J Mar Syst 19:219–233. doi:10.1016/S0924-7963(98)00091-8

    Article  Google Scholar 

  • Hoppema M, Goeyens L, Fahrbach E (2000) Intense nutrient removal in the remote area off Larsen Ice Shelf (Weddell Sea). Polar Biol 23:85–94. doi:10.1007/s003000050012

    Article  Google Scholar 

  • Hoppema M, de Baar HJW, Bellerbyc RGJ, Fahrbach E, Bakker K (2002) Annual export production in the interior Weddell Gyre estimated from a chemical mass balance of nutrients. Deep Sea Res Part II Top Stud Oceanogr 49:1675–1689. doi:10.1016/S0967-0645(02)00006-1

    Article  CAS  Google Scholar 

  • Hoppema M, Middag R, de Baar HJW, Fahrbach E, van Weerlee EM, Thomas H (2007) Whole season net community production in the Weddell Sea. Polar Biol 31:101–111. doi:10.1007/s00300-007-0336-5

    Article  Google Scholar 

  • Jennings JC Jr, Gordon LI, Nelson DM (1984) Nutrient depletion indicates high primary productivity in the Weddell Sea. Nature 309:51–54. doi:10.1038/309051a0

    Article  CAS  Google Scholar 

  • Krell A, Schnack-Schiel SB, Thomas DN, Kattner G, Zipan W, Dieckmann GS (2005) Phytoplankton dynamics in relation to hydrography, nutrients and zooplankton at the onset of sea ice formation in the eastern Weddell Sea (Antarctica). Polar Biol 28:700–713. doi:10.1007/s00300-005-0733-6

    Article  Google Scholar 

  • Lee K, Tong LT, Millero FJ, Sabine CL, Dickson G, Goyet C, Park G, Wanninkhof R, Feely RA, Ke RM (2006) Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys Res Lett 33:L19605. doi:10.1029/2006GL027207

    Article  CAS  Google Scholar 

  • Legendre L, Rassoulzadegan F (1996) Food-web mediated export of biogenic carbon in oceans: hydrodynamic control. Mar Ecol Prog Ser 145:179–193. doi:10.3354/meps145179

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program Developed for CO2 System Calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, US, Department of Energy, Oak Ridge

    Google Scholar 

  • Lizzote MP (2001) The contribution of sea ice algae to Antarctic marine primary production. Am Zool 41:57–73. doi:10.1668/0003-1569(2001)041[0057:TCOSIA]2.0.CO;2

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604. doi:10.1029/2005GL024042

    Article  Google Scholar 

  • Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980. doi:10.1111/j.1365-2486.2004.00825.x

    Article  Google Scholar 

  • Murray CN, Riley JP (1969) The solubility of gases in distilled water and seawater—II. Oxygen. Deep Sea Res 16:311–320

    CAS  Google Scholar 

  • Nelson DM, Smith WO Jr, Gordon LI, Huber BA (1987) Spring distributions of density, nutrients and phytoplankton biomass in the ice edge zone of the Weddell-Scotia Sea. J Geophys Res 92C:7181–7190. doi:10.1029/JC092iC07p07181

    Article  Google Scholar 

  • Nicol S (2006) Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56:111–120. doi:10.1641/0006-3568(2006)056[0111:KCASIE]2.0.CO;2

    Article  Google Scholar 

  • Orsi A, Nowlin W Jr, Whitworth IIIT (1993) On the circulation and stratification of the Weddell Gyre. Deep Sea Res Part I Oceanogr Res Pap 40:169–203. doi:10.1016/0967-0637(93)90060-G

    Article  Google Scholar 

  • Pakhomov EA, Froneman PW, Perissinotto R (2002) Salp/Krill interactions in the southern Ocean: spatial segregation and implications for the carbon flux. Deep Sea Res Part II Top Stud Oceanogr 49:1881–1907. doi:10.1016/S0967-0645(02)00017-6

    Article  CAS  Google Scholar 

  • Rack W, Rott H, Siegel A, Skvarca P (1999) The motion field of northern Larsen Ice Shelf, Antarctic Peninsula, derived from satellite imagery. Ann Glaciol 29:261–266. doi:10.3189/172756499781821120

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. Sea 2:26–77

    Google Scholar 

  • Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:LI8401. doi:10.1029/2004GL020697

    Google Scholar 

  • Rubin SI, Takahashi T, Chipman DW, Goddard JG (1998) Primary productivity and nutrient utilization ratios in the Pacific sector of the Southern Ocean based on seasonal changes in seawater chemistry. Deep Sea Res Part I Oceanogr Res Pap 45:1211–1234. doi:10.1016/S0967-0637(98)00021-1

    Article  CAS  Google Scholar 

  • Sarmiento JLS, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Scambos TA, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:LI8402. doi:10.1029/2004GL020670

    Article  CAS  Google Scholar 

  • Schloss IR, Ferreyra GA, Ferrario ME, Almandoz GO, Codina R, Bianchi AA, Balestrini CF, Ochoa HA, Ruiz Pino D, Poisson A (2007) Role of plankton communities in sea–air variations in pCO2 in the SW Atlantic Ocean. Mar Ecol Prog Ser 332:93–106. doi:10.3354/meps332093

    Article  CAS  Google Scholar 

  • Semeneh M, Dehairs F, Elskens M, Baumann MEM, Kopczynska EE, Lancelot C, Goeyens L (1998) Nitrogen uptake regime and phytoplankton community structure in the Atlantic and Indian sectors of the Southern Ocean. J Mar Syst 17:159–177. doi:10.1016/S0924-7963(98)00036-0

    Article  Google Scholar 

  • Skvarca P (1994) Changes and surface features of the Larsen Ice Shelf, Antarctica, derived from Landsat and Kosmos mosaics. Ann Glaciol 20:6–12

    Google Scholar 

  • Skvarca P, Rack W, Rott H (1999) 34-Year satellite time series to monitor characteristics, extent, and dynamics of Larsen B Ice Shelf, Antarctic Peninsula. Ann Glaciol 29:255–260. doi:10.3189/172756499781821283

    Article  Google Scholar 

  • Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368. doi:10.1038/nature04161

    Article  PubMed  CAS  Google Scholar 

  • Smith WO Jr, Nelson DM (1986) Importance of ice edge phytoplankton production in the Southern Ocean. Bioscience 36:251–257. doi:10.2307/1310215

    Article  CAS  Google Scholar 

  • Smith WO Jr, Nelson DM (1990) Phytoplankton growth and new production in the Weddell Sea marginal ice zone in the austral spring and autumn. Limnol Oceanogr 35:809–821

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn edn. WH Freeman, New York

    Google Scholar 

  • Stephens BB, Keeling RF (2000) The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404:171–174. doi:10.1038/35004556

    Article  PubMed  CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of sea-water analysis, 2nd edn. J Fish Res Bd Can

  • Sullivan CW, McClain CR, Comiso JC, Smith WO Jr (1988) Phytoplankton standing crops within an Antarctic ice edge assessed by satellite remote sensing. J Geophys Res 93:12487–12498. doi:10.1029/JC093iC10p12487

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res Part II Top Stud Oceanogr 49:1601–1622. doi:10.1016/S0967-0645(02)00003-6

    Article  CAS  Google Scholar 

  • Tosonotto GV, Gallo J, Comes R (2000) CTD in an area previously occupied by the Larsen Ice Shelf, Western Weddell Sea. Contribución No. 506, Dirección Nacional del Antártico, IAA, Buenos Aires

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Lagovinka S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294. doi:10.1002/joc.1130

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervolkommung der quantitativen phytoplankton. Mitt Int Verein Limnol 9:1–13

    Google Scholar 

  • van den Broeke M (2005) Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys Res Lett 32:L12815. doi:10.1029/2005GL023247

    Article  Google Scholar 

  • Vaughan DG, Doake CSM (1996) Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379:328–331. doi:10.1038/379328a0

    Article  CAS  Google Scholar 

  • Weiss RF, Östlund HG, Craig H (1979) Geochemical studies of the Weddell Sea. Deep Sea Res 26:1093–1120. doi:10.1016/0198-0149(79)90059-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Lic. Gabriela Tosonotto for her generosity in sharing data from this cruise with us, as well as the team of the Departamento de Ciencias del Mar from the Instituto Antártico Argentino and the crew from “Almirante Irizar” during the 1996 cruise. Our thanks also to Silvia Rodriguez for the phytoplankton counts and her constant help, to Drs H. Pizarro, R. Casaux, N. Coria, G. Ferreyra for their critical readings of the thesis and the manuscript, to M. Pratto for helping us with the graphic’s design and to X. Wang for advice with data. Finally, we especially thank Drs. M. Hoppema and L. Miller, as well as an anonymous reviewer, whose valuable suggestions greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene R. Schloss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolin, M.L., Schloss, I.R. Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica. Polar Biol 32, 1435–1446 (2009). https://doi.org/10.1007/s00300-009-0638-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0638-x

Keywords

Navigation