Plant-made antibody against miroestrol: a new platform for expression of full-length immunoglobulin G against small-molecule targets in immunoassays

Abstract

Key message

Plant expression platform is the new source of immunoglobulin G (IgG) toward small low-molecular-weight targets. The plant-made monoclonal antibody-based immunoassay exhibits comparable analytical performance with hybridoma antibody.

Abstract

Immunoassays for small molecules are efficiently applied for monitoring of serum therapeutic drug concentration, food toxins, environmental contamination, etc. Immunoglobulin G (IgG) is usually produced using hybridoma cells, which requires complicated procedures and expensive equipment. Plants can act as alternative and economic hosts for IgG production. However, the production of free hapten (low-molecular-weight target)-recognizing IgG from plants has not been successfully developed yet. The current study aimed at creating a plant platform as an affordable source of IgG for use in immunoassays and diagnostic tools. The functional IgG was expressed in Nicotiana benthamiana leaves infiltrated with Agrobacterium tumefaciens strain GV3101 with recombinant geminiviral vectors (pBY3R) occupying chimeric anti-miroestrol IgG genes. The appropriate assembly between heavy and light chains was achieved, and the yield of expression was 0.57 µg/g fresh N. benthamiana leaves. The binding characteristics of the IgG to miroestrol and binding specificity to related compounds, such as isomiroestrol and deoxymiroestrol, were similar to those of hybridoma-produced IgG (monoclonal antibody, mAb). The plant-based mAbs exhibited high sensitivity for miroestrol (IC50, 23.2 ± 2.1 ng/mL), precision (relative standard deviation ≤ 5.01%), and accuracy (97.8–103% recovery), as determined using quantitative enzyme-linked immunosorbent assay. The validated enzyme-linked immunosorbent assay was applicable to determine miroestrol in plant samples. Overall, the plant-produced functional IgG conserved the binding activity and specificity of the parent IgG derived from mammalian cells. Therefore, the plant expression system may be an efficient and affordable platform for the production of antibodies against low-molecular-weight targets in immunoassays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al Qaraghuli MM, Palliyil S, Broadbent G, Cullen DC, Charlton KA, Porter AJ (2015) Defining the complementarities between antibodies and haptens to refine our understanding and aid the prediction of a successful binding interaction. BMC Biotechnol. https://doi.org/10.1186/s12896-015-0217-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. AOAC International Guideline Working G (2012) Appendix K: guidelines for dietary supplements and botanicals. In: J AOAC Int. pp 268–272

  3. Beck A, Liu H (2019) Macro- and micro-heterogeneity of natural and recombinant IgG antibodies. Antibodies (Basel). https://doi.org/10.3390/antib8010018

    Article  PubMed Central  Google Scholar 

  4. Chen Q, He J, Phoolcharoen W, Mason HS (2011) Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin 7:331–338. https://doi.org/10.4161/hv.7.3.14262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Debler EW, Kaufmann GF, Kirchdoerfer RN, Mee JM, Janda KD, Wilson IA (2007) Crystal structures of a quorum-quenching antibody. J Mol Biol 368:1392–1402. https://doi.org/10.1016/j.jmb.2007.02.081

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Diamos AG, Mason HS (2018) Modifying the replication of geminiviral vectors reduces cell death and enhances expression of biopharmaceutical proteins in Nicotiana benthamiana leaves. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01974

    Article  PubMed  Google Scholar 

  7. Diamos AG, Hunter JGL, Pardhe MD, Rosenthal SH, Sun H, Foster BC, DiPalma MP, Chen Q, Mason HS (2019) High level production of monoclonal antibodies using an optimized plant expression system. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00472

    Article  PubMed  Google Scholar 

  8. Donini M, Marusic C (2019) Current state-of-the-art in plant-based antibody production systems. Biotechnol Lett 41:335–346. https://doi.org/10.1007/s10529-019-02651-z

    CAS  Article  PubMed  Google Scholar 

  9. Edgue G, Twyman RM, Beiss V, Fischer R, Sack M (2017) Antibodies from plants for bionanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:e1462. https://doi.org/10.1002/wnan.1462

    CAS  Article  Google Scholar 

  10. Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, Gleba Y (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci USA 103:14701–14706. https://doi.org/10.1073/pnas.0606631103

    CAS  Article  PubMed  Google Scholar 

  11. Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181. https://doi.org/10.1016/j.pbi.2004.01.015

    CAS  Article  PubMed  Google Scholar 

  12. Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78. https://doi.org/10.1038/342076a0

    CAS  Article  PubMed  Google Scholar 

  13. Huang Z, Phoolcharoen W, Lai H, Piensook K, Cardineau G, Zeitlin L, Whaley KJ, Arntzen CJ, Mason HS, Chen Q (2010) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 106:9–17. https://doi.org/10.1002/bit.22652

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Kirley TL, Norman AB (2018) Unfolding of IgG domains detected by non-reducing SDS-PAGE. Biochem Biophys Res Commun 503:944–949. https://doi.org/10.1016/j.bbrc.2018.06.100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Kitisripanya T, Krittanai S, Udomsin O, Jutathis K, Komaikul J, Juengwatanatrakul T, Sakamoto S, Tanaka H, Morimoto S, Putalun W (2017) Development of an enzyme-linked immunosorbent assay for determination of miroestrol using an anti-miroestrol monoclonal antibody. Planta Med 83:855–861. https://doi.org/10.1055/s-0043-102689

    CAS  Article  PubMed  Google Scholar 

  16. Lee JH, Kim JY, Cho SH, Jeong JH, Cho S, Park HJ, Baek SY (2017) Determination of miroestrol and isomiroestrol from Pueraria mirifica (White Kwao Krua) in dietary supplements by LC-MS-MS and LC-Q-Orbitrap/MS. J Chromatogr Sci 55:214–221. https://doi.org/10.1093/chromsci/bmw171

    CAS  Article  PubMed  Google Scholar 

  17. Lemeulle C, Chardès T, Montavon C, Chaabihi H, Mani J-C, Pugnière M, Cerutti M, Devauchelle G, Pau B, Biard-Piechaczyk M (1998) Anti-digoxin scFv fragments expressed in bacteria and in insect cells have different antigen binding properties. FEBS Lett 423:159–166. https://doi.org/10.1016/s0014-5793(98)00029-5

    CAS  Article  PubMed  Google Scholar 

  18. Liang M, Dubel S, Li D, Queitsch I, Li W, Bautz EK (2001) Baculovirus expression cassette vectors for rapid production of complete human IgG from phage display selected antibody fragments. J Immunol Methods 247:119–130. https://doi.org/10.1016/s0022-1759(00)00322-7

    CAS  Article  PubMed  Google Scholar 

  19. Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11:56. https://doi.org/10.1186/1475-2859-11-56

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Nandi S, Kwong AT, Holtz BR, Erwin RL, Marcel S, McDonald KA (2016) Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. MAbs 8:1456–1466. https://doi.org/10.1080/19420862.2016.1227901

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. National Consumer Affairs Center of Japan (2017) Health foods containing "Pueraria mirifica" for beauty purposes. Report of July 13, in Japanese. http://www.kokusen.go.jp/pdf/n-20170713_1.pdf.

  22. Pongkitwitoon B, Boonsnongcheep P, Kitisripanya T, Yusakul G, Sakamoto S, Tanaka H, Morimoto S, Putalun W (2019) Preparation of a highly specific single chain variable fragment antibody targeting miroestrol and its application in quality control of Pueraria candollei by enzyme-linked immunosorbent assay. Phytochem Anal 30:600–608. https://doi.org/10.1002/pca.2832

    CAS  Article  PubMed  Google Scholar 

  23. Potgieter TI, Kersey SD, Mallem MR, Nylen AC, d’Anjou M (2010) Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnol Bioeng 106:918–927. https://doi.org/10.1002/bit.22756

    CAS  Article  PubMed  Google Scholar 

  24. Rattanapisit K, Shanmugaraj B, Manopwisedjaroen S, Purwono PB, Siriwattananon K, Khorattanakulchai N, Hanittinan O, Boonyayothin W, Thitithanyanont A, Smith DR, Phoolcharoen W (2020) Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Sci Rep. https://doi.org/10.1038/s41598-020-74904-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Robinson MP, Ke N, Lobstein J, Peterson C, Szkodny A, Mansell TJ, Tuckey C, Riggs PD, Colussi PA, Noren CJ, Taron CH, DeLisa MP, Berkmen M (2015) Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun. https://doi.org/10.1038/ncomms9072

    Article  PubMed  PubMed Central  Google Scholar 

  26. Seo Y, Lee Y, Kim M, Park H, Kwon MH (2020) Assembly and folding properties of cytosolic IgG intrabodies. Sci Rep. https://doi.org/10.1038/s41598-020-58798-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shanmugaraj B, Bulaon CJ, Phoolcharoen W (2020a) Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants-Basel 9:842. https://doi.org/10.3390/plants9070842

    CAS  Article  PubMed Central  Google Scholar 

  28. Shanmugaraj B, Bulaon CJ, Phoolcharoen W (2020b) Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants (Basel). https://doi.org/10.3390/plants9070842

    Article  Google Scholar 

  29. Stoyle CL, Stephens PE, Humphreys DP, Heywood S, Cain K, Bulleid NJ (2017) IgG light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design. Biochem J 474:3179–3188. https://doi.org/10.1042/BCJ20170342

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Thio M, Groot Kormelink T, Fischer MJ, Blokhuis BR, Nijkamp FP, Redegeld FA (2012) Antigen binding characteristics of immunoglobulin free light chains: crosslinking by antigen is essential to induce allergic inflammation. PLoS ONE 7:e40986. https://doi.org/10.1371/journal.pone.0040986

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Tremouillaux-Guiller J, Moustafa K, Hefferon K, Gaobotse G, Makhzoum A (2020) Plant-made HIV vaccines and potential candidates. Curr Opin Biotechnol 61:209–216. https://doi.org/10.1016/j.copbio.2020.01.004

    CAS  Article  PubMed  Google Scholar 

  32. Vendel MC, Favis M, Snyder WB, Huang F, Capili AD, Dong J, Glaser SM, Miller BR, Demarest SJ (2012) Secretion from bacterial versus mammalian cells yields a recombinant scFv with variable folding properties. Arch Biochem Biophys 526:188–193. https://doi.org/10.1016/j.abb.2011.12.018

    CAS  Article  PubMed  Google Scholar 

  33. Wada R, Matsui M, Kawasaki N (2019) Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. MAbs 11:350–372. https://doi.org/10.1080/19420862.2018.1551044

    CAS  Article  PubMed  Google Scholar 

  34. Webster GR, Teh AY, Ma JK (2017) Synthetic gene design-the rationale for codon optimization and implications for molecular pharming in plants. Biotechnol Bioeng 114:492–502. https://doi.org/10.1002/bit.26183

    CAS  Article  PubMed  Google Scholar 

  35. Yusakul G, Putalun W, Udomsin O, Juengwatanatrakul T, Chaichantipyuth C (2011) Comparative analysis of the chemical constituents of two varieties of Pueraria candollei. Fitoterapia 82:203–207. https://doi.org/10.1016/j.fitote.2010.09.009

    CAS  Article  PubMed  Google Scholar 

  36. Yusakul G, Sakamoto S, Tanaka H, Morimoto S (2016) Efficient expression of single chain variable fragment antibody against paclitaxel using the Bombyx mori nucleopolyhedrovirus bacmid DNA system and its characterizations. J Nat Med 70:592–601. https://doi.org/10.1007/s11418-016-0981-5

    CAS  Article  PubMed  Google Scholar 

  37. Yusakul G, Nuntawong P, Sakamoto S, Ratnatilaka Na Bhuket P, Kohno T, Kikkawa N, Rojsitthisak P, Shimizu K, Tanaka H, Morimoto S (2017) Bacterial expression of a single-chain variable fragment (scFv) antibody against ganoderic acid A: a cost-effective approach for quantitative analysis using the scFv-based enzyme-linked immunosorbent assay. Biol Pharm Bull 40:1767–1774. https://doi.org/10.1248/bpb.b17-00531

    CAS  Article  PubMed  Google Scholar 

  38. Yusakul G, Sakamoto S, Nuntawong P, Tanaka H, Morimoto S (2018) Different expression systems resulted in varied binding properties of anti-paclitaxel single-chain variable fragment antibody clone 1C2. J Nat Med 72:310–316. https://doi.org/10.1007/s11418-017-1136-z

    CAS  Article  PubMed  Google Scholar 

  39. Yusakul G, Juengsanguanpornsuk W, Sritularak B, Phaisan S, Juengwatanatrakul T, Putalun W (2020) (+)-7-O-Methylisomiroestrol, a new chromene phytoestrogen from the Pueraria candollei var. mirifica root. Nat Prod Res. https://doi.org/10.1080/14786419.2020.1727473

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We also thank Professor Hugh Mason (Arizona State University) for providing the geminiviral vector.

Funding

The authors express their gratitude to the Faculty of Pharmaceutical Sciences, Chulalongkorn University, for providing a research fund (Grant number Phar2563-RG011) to WP and the Graduate School, Ratchadapisek Somphot Fund, for providing the financial support to KR. This research was financially supported by the new strategic research project (P2P), Walailak University, Thailand.

Author information

Affiliations

Authors

Contributions

KR, TK, AK, WS, AB, and GY conducted experiments. WP, SS, WP, and GY conceived and designed research. KR and GY wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Gorawit Yusakul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Kan Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rattanapisit, K., Kitisripanya, T., Konyanee, A. et al. Plant-made antibody against miroestrol: a new platform for expression of full-length immunoglobulin G against small-molecule targets in immunoassays. Plant Cell Rep (2021). https://doi.org/10.1007/s00299-021-02670-z

Download citation

Keywords

  • Plant-made antibody
  • Monoclonal antibody
  • Immunoassay
  • Miroestrol
  • ELISA