Skip to main content
Log in

Functional characterization of Terminal Flower1 homolog in Cornus canadensis by genetic transformation

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

TFL1homologCorcanTFL1suppresses the initiation of inflorescence development and regulates the inflorescence morphology inCornus canadensis.

Abstract

In flowering plants, there is a wide range of variation of inflorescence morphology. Despite the ecological and evolutionary importance, efforts devoted to the evolutionary study of the genetic basis of inflorescence morphology are far fewer compared to those on flower development. Our previous study on gene expression patterns suggested a CorTFL1–CorAP1 based model for the evolution of determinate umbels, heads, and mini dichasia from elongated inflorescences in Cornus. Here, we tested the function of CorcanTFL1 in regulating inflorescence development in Cornus canadensis through Agrobacterium-mediated transformation. We showed that transgenic plants overexpressing CorcanTFL1 displayed delayed or suppressed inflorescence initiation and development and extended periods of vegetative growth. Transgenic plants within which CorcanTFL1 had been down-regulated displayed earlier emergence of inflorescence and a reduction of bract and inflorescence sizes, conversions of leaves to bracts and axillary leaf buds to small inflorescences at the uppermost node bearing the inflorescence, or phyllotaxy changes of inflorescence branches and leaves from decussate opposite to spirally alternate. These observations support an important role of CorcanTFL1 in determining flowering time and the morphological destinies of leaves and buds at the node bearing the inflorescence. The evidence is in agreement with the predicted function of CorTFL1 from the gene expression model, supporting a key role of CorTFL1 in the evolutionary divergence of inflorescence forms in Cornus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn JH, Miller D, Winter VJ et al (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154:516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berbel A, Ferrándiz C, Hecht V et al (2012) VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nat Commun 3:797

    Article  CAS  PubMed  Google Scholar 

  • Bradley D, Carpenter R, Copsey L et al (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chery (2016) RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 4(7):35–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Conti L, Bradley D (2007) TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19:767–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng CM, Qu R, Zhou LL et al (2009) Shoot regeneration of dwarf dogwood (Cornus canadensis L.) and morphological characterization of the regenerated plants. Plant Cell Tissue Organ Cult 97:27–37. https://doi.org/10.1007/s11240-009-9495-0

    Article  CAS  Google Scholar 

  • Feng C, Xiang QJ, Franks RG (2011) Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (Cornus s.l., Cornaceae). New Phytol 191:850–869

    Article  PubMed  Google Scholar 

  • Feng CM, Liu X, Yu Y et al (2012) Evolution of bract development and B-class MADS box gene expression in petaloid bracts of Cornus s. l. (Cornaceae). New Phytol 196:631–643. https://doi.org/10.1111/j.1469-8137.2012.04255.x

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti A, Barazesh S, Malcomber S et al (2008) sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci USA 105:15196–15201

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanano S, Goto K (2011) Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  PubMed Central  Google Scholar 

  • Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh J, Hibara K, Kojima M et al (2012) Rice DECUSSATE controls phyllotaxy by affecting the cytokinin signaling pathway. Plant J 72:869–881

    Article  CAS  PubMed  Google Scholar 

  • Johansson M, Staiger D (2015) Time to flower: interplay between photoperiod and the circadian clock. J Exp Bot 66:719–730. https://doi.org/10.1093/jxb/eru441

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH et al (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965. https://doi.org/10.1126/science.286.5446.1962

    Article  CAS  PubMed  Google Scholar 

  • Leibfried A, To JPC, Busch W et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172

    Article  CAS  PubMed  Google Scholar 

  • Liljegren SJ, Gustafson-Brown C, Pinyopich A et al (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipardi C, Wei Q, Paterson BM (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107:297–307

    Article  CAS  PubMed  Google Scholar 

  • Lippman ZB, Cohen O, Alvarez JP et al (2008) The making of a compound inflorescence in tomato and related nightshades. PLoS Biol 6:e288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Franks R, Feng CF et al (2013a) Characterization of the sequence and expression pattern of LFY homologs from dogwoods species (Cornus L.) with divergent inflorescence architectures. Ann Bot 112:1629–1641. https://doi.org/10.1093/aob/mct202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Feng C-M, Franks R et al (2013b) Plant regeneration and genetic transformation of C. canadensis: a non-model plant appropriate for investigation of flower development in Cornus (Cornaceae). Plant Cell Rep 32:77–87

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang J, Abuahmad A et al (2016) Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. Planta 243:1129–1141

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li L, Xiang QY(J) (2017) Down regulation of APETALA3 homolog resulted in defect of floral structure critical to explosive pollen release in Cornus canadensis. JSA 55:566–580

    Google Scholar 

  • Ma Q, Liu X, Franks RG, Xiang QY(J) (2017) Alterations of CorTFL1 and CorAP1 expression correlate with major evolutionary shifts of inflorescence architecture in Cornus (Cornaceae)–a proposed model for variation of closed inflorescence forms. New Phytol 216:519–535

    Article  CAS  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273

    Article  CAS  PubMed  Google Scholar 

  • Mimida N, Goto K, Kobayashi Y et al (2001) Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells 6:327–336

    Article  CAS  PubMed  Google Scholar 

  • Moyroud E, Minguet EG, Ott F et al (2011) Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell 23:1293–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Périlleux C, Lobet G, Tocquin P (2014) Inflorescence development in tomato: gene functions within a zigzag model. Front Plant Sci 5:121

    PubMed  PubMed Central  Google Scholar 

  • Phillips KA, Skirpan AL, Liu X et al (2011) vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in Maize. Plant Cell 23:550–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D et al (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN. and TFL1. Development 125:1979–1989

    CAS  PubMed  Google Scholar 

  • Pnueli L, Gutfinger T, Hareven D et al (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusinkiewicz P, Erasmus Y, Lane B et al (2007) Evolution and development of inflorescence architectures. Science 316:1452–1456. https://doi.org/10.1126/science.1140429

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA et al (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    CAS  PubMed  Google Scholar 

  • Romera-Branchat M, Andrés F, Coupland G (2014) Flowering responses to seasonal cues: what’s new? Curr Opin Plant Biol 21:120–127

    Article  CAS  PubMed  Google Scholar 

  • Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239:543–564

    Article  CAS  PubMed  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell Online 3:877–892. https://doi.org/10.1105/tpc.3.9.877

    Article  CAS  Google Scholar 

  • Wagner D (2017) Key developmental transitions during flower morphogenesis and their regulation. Curr Opin Genet Dev 45:44–50

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Albani MC, Vincent C et al (2011) Aa TFL1 confers an age-dependent response to vernalization in perennial Arabis alpina. Plant Cell 23:1307–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yang R, Devisetty UK et al (2017) The divergence of flowering time modulated by FT/TFL1 is independent to their interaction and binding activities. Front Plant Sci 8:697

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR et al (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  • Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:519–527

    Article  CAS  PubMed  Google Scholar 

  • Wickland DP, Hanzawa Y (2015) The FLOWERING LOCUS T/TERMINAL FLOWER1 gene family: functional evolution and molecular mechanisms. Mol Plant 8:983–997

    Article  CAS  PubMed  Google Scholar 

  • Winter CM, Austin RS, Blanvillain-Baufume S et al (2011) LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell 20:430–443

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Andersen SU, Ljung K et al (2010) Hormonal control of the shoot stem-cell niche. Nature 465:1089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank NCSU Phytotron for providing the space of culturing C. canadensis source plants and transgenic plants. We are grateful to Ron Qu for discussion in vector construction and transformation experiments, to Ashley Yow for participating DNA extraction, to Na Li and Sarah Yim for assistance in culturing the plants in Phytotron, and to the anonymous reviewers for critical review of the manuscript and constructive comments. The study was supported by a National Science Foundation of the United States Grant (IOS-1024629).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Liu or Qiu-Yun (Jenny) Xiang.

Additional information

Communicated by Baochun Li.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 KB)

Supplementary material 2 (DOCX 13 KB)

299_2019_2369_MOESM3_ESM.tif

Fig. S1 WT Cornus canadensis plants. a) Shoot termination and inflorescence development. b) An inflorescence with expanding bracts and opening flowers Supplementary material 3 (TIF 5928 KB)

299_2019_2369_MOESM4_ESM.tif

Fig. S2 Inflorescence morphology of transgenic plants. a) Morphology of inflorescences in a plant downregulating CorcanTFL1 by hairpin construct, supporting figure 4. b) Upregulation of CorcanLFY in leaves of transgenic plants derived from the transformation of CorcanLFY overexpression. c-d) Morphology of inflorescences of plants overexpressing CorcanLFY. The procedure of vector construction for CorcanLFY overexpression is the same as that of vector pH2GW7-CorcanTFL1w Supplementary material 4 (TIF 9143 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, J., Xie, D. et al. Functional characterization of Terminal Flower1 homolog in Cornus canadensis by genetic transformation. Plant Cell Rep 38, 333–343 (2019). https://doi.org/10.1007/s00299-019-02369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02369-2

Keywords

Navigation