Skip to main content
Log in

Purine nucleotide biosynthetic gene GARS controls early chloroplast development in rice (Oryza sativa L.)

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

GARS encodes an enzyme catalyzing the second step of purine nucleotide biosynthesis and plays an important role to maintain the development of chloroplasts in juvenile plants by affecting the expression of plastid-encoded genes.

Abstract

A series of rice white striped mutants were previously described. In this research, we characterized a novel gars mutant with white striped leaves at the seedling stage. By positional cloning, we identified the mutated gene, which encodes a glycinamide ribonucleotide synthetase (GARS) that catalyzes the second step of purine nucleotide biosynthesis. Thylakoid membranes were less abundant in the albinic sectors of mutant seedling leaves compared to the wild type. The expression levels of genes involved in chlorophyll synthesis and photosynthesis were changed. Contents of ATP, ADP, AMP, GTP and GDP, which are crucial for plant growth and development, were decreased in the mutant seedlings. Complementation and CrispR tests confirmed the role of the GARS allele, which was expressed in all rice tissues, especially in the leaves. GARS protein displayed a typical chloroplast location pattern in rice protoplasts. Our results indicated that GARS was involved in chloroplast development at early leaf development by affecting the expression of plastid-encoded genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AM, Hoopes SL, White RH et al (2011) Purine biosynthesis in archaea: variations on a theme. Biol Direct 6:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhr F, Lahroussi A, Springer A et al (2017) NADPH: protochlorophyllide oxidoreductase B (PORB) action in Arabidopsis thaliana revisited through transgenic expression of engineered barley PORB mutant proteins. Plant Mol Biol 94:45–49

    Article  CAS  PubMed  Google Scholar 

  • Cahoon AB, Stern DB (2001) Plastid transcription: a menage a trois? Trends Plant Sci 6:45–46

    Article  CAS  Google Scholar 

  • Chang SH, Lee S, Um TY et al (2017) pTAC10, a key subunit of plastid-encoded rna polymerase, promotes chloroplast development. Plant Physiol 174:435–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frick G, Su Q, Apel K et al (2003) An Arabidopsis porB porC, double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. Plant J 35:141–153

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P, Reimholz R, Geiger M et al (1997) Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit. Planta 201:502–518

    Article  CAS  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajirezaei MR, Börnke F, Peisker M et al (2003) Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). J Exp Bot 54:477–488

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka M, Kanamaru K, Fujiwara M et al (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 6:545–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung WF, Chen LJ, Boldt R et al (2004) Characterization of Arabidopsis glutamine phosphoribosyl pyrophosphate amidotransferase-deficient mutants. Plant Physiol 135:1314–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon JS, Lee S, Jung KH et al (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Khlyntseva SV, Bazel YR, Vishnikin AB et al (2009) Methods for the determination of adenosine triphosphate and other adenine nucleotides. J Analytical Chem 64:657–673

    Article  CAS  Google Scholar 

  • Kim C, Apel K (2012) Arabidopsis light-dependent NADPH: protochlorophyllide oxidoreductase A (PORA) is essential for normal plant growth and development: an addendum. Plant Mol Biol 80:237–240

    Article  CAS  PubMed  Google Scholar 

  • Krause K, Maier RM, Kofer W et al (2000) Disruption of plastid-encoded RNA polymerase genes in tobacco: expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome. Mol Gen Genet 263:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Lebedev N, van Cleve B, Armstrong GA et al (1995) Chlorophyll biosynthesis in a de-etiolated (det340) mutant of Arabidopsis without NADPH-protochlorophyllide (Pchlide) oxidoreductase (POR) A and photoactive Pchlide-F655. Plant Cell 7:2081–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legen J, Kemp S, Krause K et al (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J 31:171–188

    Article  CAS  PubMed  Google Scholar 

  • Link G (2003) Redox regulation of chloroplast transcription. Antioxid Redox Signal 5:79–87

    Article  CAS  PubMed  Google Scholar 

  • Moffatt BA, Ashihara H (2002) Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book 1:e0018

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu M, Wang Y, Wang C et al (2017) ALR encoding dCMP deaminase is critical for DNA damage repair, cell cycle progression and plant development in rice. J Exp Bot 68:5773–5786

    Article  CAS  PubMed  Google Scholar 

  • Oosawa N, Masuda T, Awai K et al (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474:133–136

    Article  CAS  PubMed  Google Scholar 

  • Paddock TN, Mason ME, Lima DF et al (2010) Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Mol Biol 72:445–457

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak GK, Tripathy BC (2002) Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. Biochem Biophys Res Commun 291:921–924

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Liere K (2005) Redox regulation and modification of proteins controlling chloroplast gene expression. Antioxid Redox Signal 7:607–618

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe C, El Bakkouri M, Buhr F et al (2010) Chlorophyll biosynthesis: potlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Wang Y, Liu F et al (2014) GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. Plant Cell 26:410–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satou M, Enoki H, Oikawa A et al (2014) Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins. Plant Mol Biol 85:411–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharff LB, Bock R (2014) Synthetic biology in plastids. Plant J 78:783–798

    Article  CAS  PubMed  Google Scholar 

  • Serino G, Maliga P (1998) RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme. Plant Physiol 117:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi K, Gu K, Guo H et al (2017) Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta. PloS One 12:e0177992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA et al (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    Article  CAS  PubMed  Google Scholar 

  • Steiner S, Schröter Y, Pfalz J et al (2011) Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. Plant Physiol 157:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Q, Frick G, Armstrong G et al (2001) PORC of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47:805–813

    Article  CAS  PubMed  Google Scholar 

  • Sun CW, Chen LJ, Lin LC et al (2001) Leaf-specific up-regulation of chloroplast translocon genes by a CCT motif-containing protein, CIA2. Plant Cell 13:2053–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swiatecka-Hagenbruch M, Emanuel C, Hedtke B et al (2008) Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase. Nucleic Acids Res 36:785–792

    Article  CAS  PubMed  Google Scholar 

  • Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7:1105–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiller K, Link G (1995) Sigma-like plastid transcription factors. Methods Mol Biol 37:337–348

    CAS  PubMed  Google Scholar 

  • Van der Graaff E, Hooykaas P, Lein W et al (2004) Molecular analysis of ‘‘de novo’’ purine biosynthesis in solanaceous species and in Arabidopsis thaliana. Front Biosci 9:1803–1816

    Article  PubMed  Google Scholar 

  • Wang Y, Wang C, Zheng M et al (2016) WHITE PANICLE1, a Val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development. Plant physiol 170:2110–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo NS, Gordon MJ, Graham SR et al (2011) A mutation in the purine biosynthetic enzyme ATASE2 impacts high light signalling and acclimation responses in green and chlorotic sectors of Arabidopsis leaves. Funct Plant Biol 38:401–419

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Shang Z, Wang L et al (2015) Purine biosynthetic enzyme ATase2 is involved in the regulation of early chloroplast development and chloroplast gene expression in Arabidopsis. Photosynthesis Res 126:285–300

    Article  CAS  Google Scholar 

  • Yoo SC, Cho SH, Sugimoto H et al (2009) Rice Virescent3 and Stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150:388–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, P.R.China, and Jiangsu Collaborative Innovation Center for Modern Crop Production, and grants from the National Key Research and Development Program of China (2016YFD0100101-08), National Transgenic Research Key Project (2016ZX08001006), and Jiangsu Science and Technology Development Program (BE2017368).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Jiang or Jianmin Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Kang Chong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2278 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, P., Ren, Y., Liu, X. et al. Purine nucleotide biosynthetic gene GARS controls early chloroplast development in rice (Oryza sativa L.). Plant Cell Rep 38, 183–194 (2019). https://doi.org/10.1007/s00299-018-2360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2360-z

Keywords

Navigation