Skip to main content
Log in

The oomycete microbe-associated molecular pattern Pep-13 triggers SERK3/BAK1-independent plant immunity

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Oomycetes MAMP Pep-13 can trigger SERK3/BAK1-independent PTI. Silencing of SERK3/BAK1 in solanaceous plants resulted in reduced expression of brassinosteroid marker genes and enhanced PTI transcriptional responses to Pep-13 treatment.

Abstract

To prevent disease, pattern recognition receptors (PRRs) are responsible for detecting microbe-associated molecular patterns (MAMPs) to switch on plant innate immunity. SOMATIC EMBROYOGENESIS KINASE 3 (SERK3)/BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) is a well-characterized receptor-like kinase (RLK) that serves as a pivotal co-receptor with PRRs to activate immunity following recognition of MAMPs including flg22, EF-Tu, INF1 and XEG1. However, the requirement for SERK3/BAK1 in many pattern-triggered immune (PTI) signaling pathways is not yet known. Pep-13 is an oomycete MAMP that consists of a highly conserved motif (an oligopeptide of 13 amino acids) shared in Phytophthora transglutaminases. Quantitative RT-PCR analysis reveals that the transcripts of three PTI marker genes (WRKY7, WRKY8 and ACRE31) rapidly accumulate in response to three different MAMPs: flg22, chitin and Pep-13. Whereas silencing of SERK3/BAK1 in Nicotiana benthamiana or potato compromised transcript accumulation in response to flg22, it did not attenuate WRKY7, WRKY8 and ACRE31 up-regulation in response to chitin or Pep-13. This indicates that Pep-13 triggers immunity in a SERK3/BAK1-independent manner, similar to chitin. Surprisingly, silencing of SERK3/BAK1 led to significantly increased accumulation of PTI marker gene transcripts following Pep-13 or chitin treatment, compared to controls. This was accompanied by reduced expression of brassinosteroid (BR) marker genes StSTDH, StEXP8 and StCAB50 and StCHL1, which is a negative regulator of PTI, supporting previous reports that SERK3/BAK1-dependent BR signaling attenuates plant immunity. We provide Pep-13 as an alternative to chitin as a trigger of SERK3/BAK1-independent immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PRRs:

Pattern recognition receptors

MAMPs:

Microbe-associated molecular patterns

BAK1:

BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1

PTI:

Pattern-triggered immune

ETI:

Effector-triggered immunity

RLK:

Receptor-like kinase

References

  • Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci USA 109:303–308

    Article  PubMed  Google Scholar 

  • Antolin-Llovera M, Ried MK, Parniske M (2014) Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE ectodomain promotes complex formation with Nod factor receptor 5. Curr Biol 24:422–427

    Article  CAS  PubMed  Google Scholar 

  • Belkhadir Y, Yang L, Hetzel J, Dangl JL, Chory J (2014) The growth-defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends Biochem Sci 39:447–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Khaled S, Postma J, Robatzek S (2015) A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity. Annu Rev Phytopathol 53:379–402

    Article  CAS  PubMed  Google Scholar 

  • Bohm H, Albert I, Oome S, Raaymakers TM, Van den Ackerveken G, Nurnberger T (2014) A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog 10:e1004491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodaczewska K, Donskow-Lysoniewska K, Doligalska M (2015) Chitin, a key factor in immune regulation: lesson from infection with fungi and chitin bearing parasites. Acta Parasitol 60:337–344

    Article  CAS  PubMed  Google Scholar 

  • Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nurnberger T (2002) Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21:6681–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3:e03766

    Article  CAS  PubMed Central  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135

    Article  CAS  PubMed  Google Scholar 

  • Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S, Findlay K, Coffey MD, Zipfel C, Rathjen JP, Kamoun S, Schornack S (2011) The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PloS One 6:e16608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin induced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature 448:497–500

    Article  CAS  PubMed  Google Scholar 

  • Cikos S, Bukovska A, Koppel J (2007) Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol Biol 8:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552

    Article  CAS  PubMed  Google Scholar 

  • Desaki Y, Miyata K, Suzuki M, Shibuya N, Kaku H (2018) Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immun 24:92–100

    Article  CAS  PubMed  Google Scholar 

  • Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LC, Zhou J, Liebrand TW, Xie C, Govers F, Robatzek S, van der Vossen EA, Jacobsen E, Visser RG, Kamoun S, Vleeshouwers VG (2015) Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat Plants 1:15034

    Article  CAS  PubMed  Google Scholar 

  • Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immun 54:213–223

    Article  CAS  Google Scholar 

  • Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nürnberger T (2002) NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 32:375–390

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  Google Scholar 

  • Gopalakannan A, Aru V (2006) Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in pond. Aquaculture 255:179–187

    Article  CAS  Google Scholar 

  • Halim VA, Altmann S, Ellinger D, Eschen-Lippold L, Miersch O, Scheel D, Rosahl S (2009) PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J 57:230–242

    Article  CAS  PubMed  Google Scholar 

  • He Q, McLellan H, Boevink PC, Sadanandom A, Xie C, Birch PR, Tian Z (2015) U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. J Exp Bot 66:3189–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hein I, Gilroy EM, Armstrong MR, Birch PR (2009) The zig-zag-zig in oomycete-plant interactions. Mol Plant Pathol 10:547–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones J, Dangl J (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:6316

    Article  Google Scholar 

  • Jung WJ, Park RD (2014) Bioproduction of chitooligosaccharides: present and perspectives. Mar Drugs 12:5328–5356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemmerling B, Halter T, Mazzotta S, Mosher S, Nurnberger T (2011) A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. Front Plant Sci 2:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroj T, Rudd JJ, Nürnberger T, Gäbler Y, Lee J, Scheel D (2003) Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley. J Biol Chem 278:2256–2264

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Rudd JJ, Macioszek VK, Scheel D (2004) Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J Biol Chem 279:22440–22448

    Article  CAS  PubMed  Google Scholar 

  • Lee CG, Da Silva CA, Lee JY, Hartl D, Elias JA (2008) Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 20:684–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wen J, Lease KA, Dorke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, Zhou JM, Chai J (2012) Chitin-induced dimerization activates a plant immune receptor. Science 336:1160–1164

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Duran R, Macho AP, Boutrot F, Segonzac C, Somssich IE, Zipfel C (2013) The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife 2:e00983

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Song T, Zhu L, Ye W, Wang Y, Shao Y, Dong S, Zhang Z, Dou D, Zheng X, Tyler BM, Wang Y (2015) A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27:2057–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLellan H, Boevink PC, Armstrong MR, Pritchard L, Gomez S, Morales J, Whisson SC, Beynon JL, Birch PRJ (2013) An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog 9:e1003670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    Article  PubMed  PubMed Central  Google Scholar 

  • Nam KH, Li (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  CAS  PubMed  Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449–460

    Article  PubMed  Google Scholar 

  • Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J 68:100–113

    Article  CAS  PubMed  Google Scholar 

  • Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, Jones A, Zipfel C (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7:e1002046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J (2008) Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou JM, Chai J (2013) Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624–628

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Wang G, Zhou JM (2017) Receptor kinases in plant–pathogen interactions: more than pattern recognition. Plant Cell 29:618–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbull D, Yang L, Naqvi S, Breen S, Welsh L, Stephens J, Morris J, Boevink PC, Hedley PE, Zhan J, Birch PRJ, Gilroy EM (2017) RXLR Effector AVR2 up-regulates a brassinosteroid-responsive bHLH transcription factor to suppress immunity. Plant Physiol 174:356–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was support by the National Natural Science Foundation of China (31761143007, 31171603) and the Fundamental Research Funds for the Central Universities (2662017PY069) for funding ZT’s lab. We thank the Biotechnology and Biological Sciences Research Council (BBSRC) for funding PRJB’s lab (BB/L026880/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Roger Thilmony.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2018_2359_MOESM1_ESM.docx

Figure S1 Expression time courses of flg22 induced transcripts in potato and Nicotiana benthamiana. Figure S2 Expression time course of chitin induced transcripts in potato and N. benthamiana. Figure S3 Expression time courses of Pep13 induced transcripts in potato and N. benthamiana. Figure S4 Alignment of Solanum tuberosum (potato) and Nicotiana benthamiana SERK3/BAK1 full-length nucleotide sequences. Figure S5 The silencing of BAK1 in Solanum tuberosum. Figure S6 Virus-induced gene silencing (VIGS) of BAK1 in Nicotiana benthamiana. Table S1. Primer sequences used in this study (DOCX 2759 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., He, H., Qi, Y. et al. The oomycete microbe-associated molecular pattern Pep-13 triggers SERK3/BAK1-independent plant immunity. Plant Cell Rep 38, 173–182 (2019). https://doi.org/10.1007/s00299-018-2359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2359-5

Keywords

Navigation