Skip to main content
Log in

Triticum urartu MTP1: its ability to maintain Zn2+ and Co2+ homeostasis and metal selectivity determinants

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

TuMTP1 maintains Zn2+ and Co2+ homeostasis by sequestering excess Zn2+ and Co2+ into vacuoles. The mutations NSEDD/VTVTT in the His-rich loop and I119F in TMD3 of TuMTP1 restrict metal selectivity.

Abstract

Mineral nutrients, such as zinc (Zn) and cobalt (Co), are essential or beneficial for plants but can be toxic at elevated levels. Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. However, the determinants of substrate selectivity have not been clarified due to the diversity of MTP1 substrates in various plants. In this study, Triticum urartu MTP1 was characterized. When expressed in yeast, TuMTP1 conferred tolerance to Zn2+ and Co2+ but not Fe2+, Cu2+, Ni2+ or Cd2+ in solid and liquid culture and localized on the vacuolar membrane. Furthermore, TuMTP1-expressing yeast accumulated more Zn2+ and Co2+ when treated. TuMTP1 expression in T. urartu roots was significantly increased under Zn2+ and Co2+ stresses. Determinants of substrate selectivity were then examined through site-directed mutagenesis. The exchange of NSEDD with VTVTT in the His-rich loop of TuMTP1 restricted its metal selectivity to Zn2+, whereas the I119F mutation confined specificity to Co2+. The mutations H74, D78, H268 and D272 (in the Zn2+-binding site) and Leu322 (in the C-terminal Leu-zipper) partially or completely abolished the transport function of TuMTP1. These results show that TuMTP1 might sequester excess cytosolic Zn2+ and Co2+ into yeast vacuoles to maintain Zn2+ and Co2+ homeostasis. The NSEDD/VTVTT and I119F mutations are crucially important for restricting the substrate specificity of TuMTP1, and the Zn2+-binding site and Leu322 are essential for its ion selectivity and transport function. These results can be employed to change metal selectivity for biofortification or phytoremediation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508(2):233–240

    Article  CAS  Google Scholar 

  • Blaudez D, Kohler A, Martin F, Sanders D, Chalot M (2003) Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 15(12):2911

    Article  CAS  Google Scholar 

  • Bloss T, Clemens S, Nies DH (2002) Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214(5):783–791

    Article  CAS  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144(2):1052–1065

    Article  CAS  Google Scholar 

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    Article  CAS  Google Scholar 

  • Desbrosses-Fonrouge AG, Voigt K, Schröder A, Arrivault S, Thomine S, Krämer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. Febs Lett 579(19):4165–4174

    Article  CAS  Google Scholar 

  • Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39(3):425–439

    Article  Google Scholar 

  • Gietz D, St JA, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20(6):1425

    Article  CAS  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochem Biophys Acta 1763(7):595–608

    Article  CAS  Google Scholar 

  • Johnsonbeebout SE, Goloran JB, Rubianes FH, Jacob JD, Castillo OB (2016) Zn uptake behavior of rice genotypes and its implication on grain Zn biofortification. Sci Rep 6:38301

    Article  CAS  Google Scholar 

  • Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich hoop of AtMTP1, a vacuolar Zn2+/H+ Antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283(13):8374–8383

    Article  CAS  Google Scholar 

  • Kawachi M, Kobae Y, Kogawa S, Mimura T, Krämer U, Maeshima M (2012) Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1. Febs J 279(13):2339–2356

    Article  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of dna binding proteins. Science 240(4860):1759–1764

    Article  CAS  Google Scholar 

  • Lang M, Hao M, Fan Q, Wei W, Mo S, Zhao W, Jie Z (2011) Functional characterization of BjCET3 and BjCET4, two new cation-efflux transporters from Brassica juncea L. J Exp Bot 62(13):4467

    Article  CAS  Google Scholar 

  • Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698

    Article  CAS  Google Scholar 

  • Lu M, Fu D (2007) Structure of the Zinc Transporter YiiP. Science 317(5845):1746–1748

    Article  CAS  Google Scholar 

  • Lu M, Jin C, Fu D (2009) Structural Basis for Auto-regulation of the Zinc Transporter YiiP. Nat Struct Mol Biol 16(10):1063

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. J Ecol 76(4):1250

    Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Botany 58(1):83–102

    Article  CAS  Google Scholar 

  • Menguer PK, Farthing E, Peaston KA, Ricachenevsky FK, Fett JP, Williams LE (2013) Functional analysis of the rice vacuolar zinc transporter OsMTP1. J Exp Botany 64(10):2871

    Article  CAS  Google Scholar 

  • Menguer PK, Vincent T, Miller AJ, Brown JKM, Vincze E, Borg S, Holm PB, Sanders D, Podar D (2018) Improving zinc accumulation in cereal endosperm using HvMTP1, a transition metal transporter. Plant Biotechnol J 16(1):63–71

    Article  CAS  Google Scholar 

  • Migocka M, Papierniak A, Maciaszczykdziubińska E et al (2014) Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. J Exp Bot 65(18):5367–5384

    Article  CAS  Google Scholar 

  • Migocka M, Kosieradzka A, Papierniak A et al (2015a) Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells. J Exp Bot 66(3):1001–1005

    Article  CAS  Google Scholar 

  • Migocka M, Papierniak A, Anna, Kosieradzka et al (2015b) Cucumber metal transport protein CsMTP9 is a plasma membrane H+ -coupled antiporter involved in the Mn2+ and Cd2+ efflux from root cells. Plant J Cell Mol Biol 84(6):1045–1058

    Article  CAS  Google Scholar 

  • Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genom 8(1):107

    Article  Google Scholar 

  • Nakandalage N, Nicolas M, Norton RM, Hirotsu N, Milham PJ, Seneweera S (2016) Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Front Plant Sci 7(148):764

    PubMed  PubMed Central  Google Scholar 

  • Påhlsson AMB (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut 47(3–4):287–319

    Article  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13(9):464–473

    Article  CAS  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  Google Scholar 

  • Paulsen IT, Saier JM (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156(2):99–103

    Article  CAS  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98(17):9995–10000

    Article  CAS  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274

    Article  CAS  Google Scholar 

  • Podar D, Sanders D (2010) Biofortification of barley grains by cell-type-specific expression of a vacuolar metal transporter. Roman Biotechnol Lett 15(2):117–119

    CAS  Google Scholar 

  • Podar D, Scherer J, Noordally Z, Herzyk P, Nies D, Sanders D (2012) Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 287(5):3185–3196

    Article  CAS  Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4(7):144

    PubMed  PubMed Central  Google Scholar 

  • Shingu Y, Kudo T, Ohsato S, Kimura M, Ono Y, Yamaguchi I, Hamamoto H (2005) Characterization of genes encoding metal tolerance proteins isolated from Nicotiana glauca and Nicotiana tabacum. Biochem Biophys Res Commun 331(2):675–680

    Article  CAS  Google Scholar 

  • Simmerman HK, Kobayashi YM, Autry JM, Jones LR (1996) A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J Biol Chem 271(10):5941

    Article  CAS  Google Scholar 

  • Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128(5):779–792

    Article  CAS  Google Scholar 

  • Xu J, Chai T, Zhang Y, Lang M, Han L (2009) The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves. Plant Cell Rep 28(8):1235–1242

    Article  CAS  Google Scholar 

  • Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, Huang CF, Salt DE, Zhao FJ (2016) A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environment 39(9):1941–1954

    Article  CAS  Google Scholar 

  • Yuan L, Yang S, Liu B, Zhang M, Wu K (2012) Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31(1):67–79

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. C31370281, Grant no. U1632111, Grant no. 61672489), the Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (Grant no. Y4ZK111B01), and the Chinese Academy of Sciences (Grant No. KJRH2015-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Wang or Tuan-Yao Chai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Leena Tripathi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, FH., Qiao, K., Liang, S. et al. Triticum urartu MTP1: its ability to maintain Zn2+ and Co2+ homeostasis and metal selectivity determinants. Plant Cell Rep 37, 1653–1666 (2018). https://doi.org/10.1007/s00299-018-2336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2336-z

Keywords

Navigation