Skip to main content
Log in

OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

OsEXPA10 gene coordinates the balance between rice development and biotic resistance.

Abstract

Expansins are proteins that can loosen the cell wall. Previous studies have indicated that expansin-encoding genes were involved in defense against abiotic stress, but little is known about the involvement of expansins in biotic stress. Brown planthopper (BPH) is one of the worst insect pests of rice in the Asia-Pacific planting area, and many efforts have been made to identify and clone BPH-resistance genes for use in breeding resistant cultivars. At the same time, rice blast caused by Magnaporthe grisea is one of the three major diseases that severely affect rice production worldwide. Here, we demonstrated that one rice expansin-encoding gene, OsEXPA10, functions in both rice growth and biotic resistance. Over expression of OsEXPA10 improved rice growth but also increased susceptibility to BPH infestation and blast attack, while knock-down OsEXPA10 gene expression resulted in reduced plant height and grain size, but also increased resistance to BPH and the blast pathogen. These results imply that OsEXPA10 mediates the balance between rice development and biotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BPH:

Brown planthopper

OE:

Over expression

RNAi:

RNA interference

SA:

Salicylic acid

JA:

Jasmonic acid

MeJA:

Methyl jasmonic acid

References

  • Abuqamar S, Ajeb S, Sham A et al (2013) A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Mol Plant Pathol 14:813–827

    Article  PubMed  CAS  Google Scholar 

  • Ba LJ, Shan W, Xiao YY et al (2014) A ripening-induced transcription factor MaBSD1 interacts with promoters of MaEXP1/2 from banana fruit. Plant Cell Rep 33:1913–1920

    Article  PubMed  CAS  Google Scholar 

  • Bae JM, Kwak MS, Noh SA et al (2014) Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res 23:657–667

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Cosgrove D, Bonfante P (2005) Differential location of α-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220:889–899

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Zhu L, He G (2013) Towards understanding of molecular interactions between rice and the brown planthopper. Mol Plant 6:621–634

    Article  PubMed  CAS  Google Scholar 

  • Cho HT, Kende H (1997) Expression of expansin genes is correlated with growth in deepwater rice. Plant cell 9:1661–1671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cosgrove DJ (1997) Assembly and enlargement of the prim ary cell wall in plants. Ann Rev Cell Dev Biol 13:171–201

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Li LC, Cho HT et al (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    Article  PubMed  CAS  Google Scholar 

  • Dai F, Zhang C, Jiang X et al (2012) RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol 160:2064–2082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding X, Cao Y, Huang L et al (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du B, Zhang W, Liu B et al (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106:22163–22168

    Article  PubMed  PubMed Central  Google Scholar 

  • Gal TZ, Aussenberg ER, Burdman S et al (2006) Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato. Planta 224:155–162

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Chen Y, Yin S et al (2015) Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J Plant Physiol 173:62–71

    Article  PubMed  CAS  Google Scholar 

  • Han YC, Kuang JF, Chen JY et al (2016) Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. Plant Physiol 171:1070–1084

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hayashi T, Wong YS, Maclachlan G (1984) Pea xyloglucan and cellulose: II. Hydrolysis by pea endo-1,4-beta-glucanases. Plant Physiol 75:605–610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helliwell EE, Yang Y (2013) Molecular strategies to improve rice disease resistance. Methods Mol Biol 956:285–309

    Article  PubMed  CAS  Google Scholar 

  • Hematy K, Cherk C, Somerville S (2009) Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12:406–413

    Article  PubMed  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Quart Rev Biol 67:283–335

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Xiao C, He Y (2016) Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice 9:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Zhang C, Lu P et al (2014) RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnol J 12:38–48

    Article  PubMed  CAS  Google Scholar 

  • Karasov TL, Chae E, Herman JJ et al (2017) Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29:666–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kende H, Bradford K, Brummell D et al (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  PubMed  CAS  Google Scholar 

  • Kwasniewski M, Szarejko I (2006) Molecular cloning and characterization of β-expansin gene related to root hair formation in barley. Plant Physiol 141:1149–1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee Y, Choi D, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 4:527–532

    Article  PubMed  CAS  Google Scholar 

  • Li LC, Bedinger PA, Volk C et al (2003a) Purification and characterization of four β-expansins (Zea m 1 isoforms) from maize pollen. Plant Physiol 132:2073–2085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Jones L, McQueen-Mason S (2003b) Expansins and cell growth. Curr Opin Plant Biol 6:603–610

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhao J, Tan Z et al (2015) GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169:2640–2653

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu L, Tong H, Xiao Y et al (2015) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci 112:11102–11107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Li J, Ju H et al (2014) Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice. Mol Plant 7:1670–1682

    Article  PubMed  CAS  Google Scholar 

  • Lü P, Kang M, Jiang X et al (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559

    Article  PubMed  CAS  Google Scholar 

  • Marowa P, Ding A, Kong Y (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35:949–965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McNeil M, Darvill AG, Fry SC et al (1984) Structure and function of the primary cell walls of plants. Ann Rev Biochem 53:625–663

    Article  PubMed  CAS  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller B, Bourdais G, Reidy B et al (2007) Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Plant Physiol 143:278–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noh SA, Lee H-S, Kim Y-S et al (2013) Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato. J Exp Bot 64:129–142

    Article  PubMed  CAS  Google Scholar 

  • Palapol Y, Kunyamee S, Thongkhum M et al (2015) Expression of expansin genes in the pulp and the dehiscence zone of ripening durian (Durio zibethinus) fruit. J Plant Physiol 182:33–39

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Kudla U, Roze EH et al (2004) Plant degradation: a nematode expansin acting on plants. Nature 427:30–30

    Article  PubMed  CAS  Google Scholar 

  • Rose JK, Lee HH, Bennett AB (1997) Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA 94:5955–5960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin JH, Jeong DH, Park MC et al (2005) Characterization and transcriptional expression of the alpha-expansin gene family in rice. Mol Cells 20:210–218

    PubMed  CAS  Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150

    Article  PubMed  CAS  Google Scholar 

  • Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 3:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Wang L, Zou Y et al (2014) Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell 26:4782–4801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195

    Article  PubMed  CAS  Google Scholar 

  • Won S-K, Choi S-B, Kumari S et al (2010) Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol Cells 30:369–376

    Article  PubMed  CAS  Google Scholar 

  • Xia XJ, Zhou YH, Shi K et al (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Tian J, Belanger FC et al (2007) Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species. J Exp Bot 58:3789–3796

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Gou J-Y, Li F-G et al (2013) A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production. Mol Plant 6:945–958

    Article  PubMed  CAS  Google Scholar 

  • Yang YX, Ahammed GJ, Wu C et al (2015) Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Curr Protein Peptide Sci 16:450–461

    Article  CAS  Google Scholar 

  • Zhao M-r, Li F, Fang Y et al. (2011) Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma 248:313–332

    Article  PubMed  Google Scholar 

  • Zust T, Agrawal AA (2017) Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Ann Rev Plant Biol 68:513–534

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFD0100603), the National Transgenic Great Subject from the Ministry of Agriculture of China (2016ZX08009-003-001) and the National Natural Science Foundation of China (31371949). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuexia Miao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Da-Bing Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Wang, M., Shi, Z. et al. OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. Plant Cell Rep 37, 993–1002 (2018). https://doi.org/10.1007/s00299-018-2284-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2284-7

Keywords

Navigation