Skip to main content

Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells

Abstract

Key message

Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis.

Abstract

The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca2+) as shown by comparison of transport assays in Ca2+-rich and Ca2+-free buffers and upon treatment with inhibitors of plasma membrane Ca2+-permeable channels Al3+ and ruthenium red, both abolishing the effect of AgNO3. Confocal microscopy of Ca2+-sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca2+-permeable channels at the plasma membrane.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abramson JJ, Trimm JL, Weden L, Salama G (1983) Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle. Proc Natl Acad Sci USA 80:1526–1530

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Binder BM, Rodriguez FI, Bleecker AB, Patterson SE (2007) The effects of group 11 transition metals, including gold, on ethylene binding to the ETR1 receptor and growth of Arabidopsis thaliana. FEBS Lett 581:5105–5109

    CAS  Article  PubMed  Google Scholar 

  • Bonza MC, Loro G, Behera S, Wong A, Kudla J, Costa A (2013) Analyses of Ca2+ accumulation and dynamics in the endoplasmic reticulum of Arabidopsis root cells using a genetically encoded Cameleon sensor. Plant Physiol 163:1230–1241

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Britto DT, Ebrahimi-Ardebili S, Hamam AM, Coskun D, Kronzucker HJ (2010) 42K analysis of sodium-induced potassium efflux in barley: mechanism and relevance to salt tolerance. New Phytol 186:373–384

    CAS  Article  PubMed  Google Scholar 

  • Coskun D, Britto DT, Jean Y-K, Schulze LM, Becker A, Kronzucker HJ (2012) Silver ions disrupt K+ homeostasis and cellular integrity in intact barley (Hordeum vulgare L.) roots. J Exp Bot 63:151–162

    CAS  Article  PubMed  Google Scholar 

  • Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells: a primary response to salt stress? Plant Physiol 79:207–211

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dart C, Leyland ML, Barrett-Jolley R, Shelton PA, Spencer PJ, Conley EC, Sutcliffe MJ, Stanfield PR (1998a) The dependence of Ag+ block of a potassium channel, murine kir2.1, on a cysteine residue in the selectivity filter. J Physiol 511:15–24

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dart C, Leyland ML, Spencer PJ, Stanfield PR, Sutcliffe MJ (1998b) The selectivity filter of a potassium channel, murine kir2.1, investigated using scanning cysteine mutagenesis. J Physiol 511:25–32

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532–541

    CAS  Article  PubMed  Google Scholar 

  • Furuichi T, Cunningham KW, Muto S (2001) A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 42:900–905

    CAS  Article  PubMed  Google Scholar 

  • Gromová P, Kurejová M, Lacinová L (2003) Inhibition of Cav3.1 channel by silver ions. Gen Physiol Biophys 22:515–523

    PubMed  Google Scholar 

  • Herbert RJ, Vilhar B, Evett C, Orchard CB, Rogers HJ, Davies MS, Francis D (2001) Ethylene induces cell death at particular phases of the cell cycle in the tobacco TBY-2 cell line. J Exp Bot 52:1615–1623

    CAS  PubMed  Google Scholar 

  • Huang JW, Shaff JE, Grunes DL, Kochian LV (1992) Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol 98:230–237

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jones D, Kochian L (1998) Aluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell cultures. Plant Physiol 116:81–89

    CAS  Article  PubMed Central  Google Scholar 

  • Kadota Y, Furuichi T, Ogasawara Y, Goh T, Higashi K, Muto S, Kuchitsu K (2004) Identification of putative voltage-dependent Ca2+-permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 cells. Biochem Biophys Res Commun 317:823–830

    CAS  Article  PubMed  Google Scholar 

  • Kawano T, Kadono T, Fumoto K, Lapeyrie F, Kuse M, Isobe M, Furuichi T, Muto S (2004) Aluminum as a specific inhibitor of plant TPC1 Ca2+ channels. Biochem Biophys Res Commun 324:40–45

    CAS  Article  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    CAS  Article  Google Scholar 

  • Křížková S, Kryštofová O, Trnková L, Hubálek J, Adam V, Beklová M, Horna A, Havel L, Kizek R (2009) Silver ions ultrasensitive detection at carbon electrodes—analysis of waters, tobacco cells and fish tissues. Sensors 9:6934–6950

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3—a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12:1–15

    Article  Google Scholar 

  • Melcrová A, Pokorna S, Pullanchery S, Kohagen M, Jurkiewicz P, Hof M, Jungwirth P, Cremer PS, Cwiklik L (2016) The complex nature of calcium cation interactions with phospholipid bilayers. Sci Rep 6:38035

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    CAS  Article  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447

    CAS  Article  PubMed  Google Scholar 

  • Oba T, Yamaguchi M, Wang S, Johnson JD (1992) Modulation of the Ca2+ channel voltage sensor and excitation–contraction coupling by silver. Biophys J 63:1416–1420

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubeš M, Čovanová M, Dhonukshe P, Skůpa P, Benková E, Perry L, Křeček P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zažímalová E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  PubMed  Google Scholar 

  • Prabhu SD, Salama G (1990) The heavy metal ions Ag+ and Hg2+ trigger calcium release from cardiac sarcoplasmic reticulum. Arch Biochem Biophys 277:47–55

    CAS  Article  PubMed  Google Scholar 

  • Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998

    Article  PubMed  Google Scholar 

  • Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  PubMed  PubMed Central  Google Scholar 

  • Salama G, Abramson J (1984) Silver ions trigger Ca2+ release by acting at the apparent physiological release site in sarcoplasmic reticulum. J Biol Chem 259:13363–13369

    CAS  PubMed  Google Scholar 

  • Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I, Demidchik V (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J 85:245–257

    CAS  Article  PubMed  Google Scholar 

  • Strader LC, Beisner ER, Bartel B (2009) Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell 21:3585–3590

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Wang L, Li S, Yin L, Huang J, Chen C (2017) Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway. Environ Toxicol Chem 36:2773–2780

    CAS  Article  PubMed  Google Scholar 

  • Vanneste S, Friml J (2013) Calcium: the missing link in auxin action. Plants 2(4):650–675

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Volk GM, Goss LJ, Franceschi VR (2004) Calcium channels are involved in calcium oxalate crystal formation in specialized cells of Pistia stratiotes L. Ann Bot 93:741–753

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465:171–189

    CAS  Article  PubMed  Google Scholar 

  • Zhao XC, Qu X, Mathews DE (2002) Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol 130:1983–1991

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Education, Youth and Sports of Czech Republic, Project MSM/LO1417 (JP), Czech Science Foundation Project GA16-10948S (PK, ML, JP) and by a grant from Ghent University (Bijzonder Onderzoeksfonds, Bilateral Cooperation, BILA-06) to DVDS. FV was a post-doctoral fellow of the Fund for Scientific Research—Flanders (FWO). IEB Imaging Facility is supported by Operational Programme Prague—Competitiveness, Project No. CZ.2.16/3.1.00/21519. The authors would like to thank Dr. Edita Tylová for her critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Petrášek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Attila Feher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 181 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klíma, P., Laňková, M., Vandenbussche, F. et al. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells. Plant Cell Rep 37, 809–818 (2018). https://doi.org/10.1007/s00299-018-2269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2269-6

Keywords

  • Silver ions
  • Calcium
  • Tobacco BY-2 cells
  • Transmembrane transport
  • Ethylene
  • Auxin