Skip to main content
Log in

Citrus plants exude proline and phytohormones under abiotic stress conditions

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This article describes the root exudation of proline and phytohormones in citrus and their involvement in salt- and heat-stress responses.

Abstract

Plants are constantly releasing several compounds to the rhizosphere through their roots, including primary and secondary metabolites. Root exudation can be affected by growth conditions, including pH, nutrient availability, soil salinity, or temperature. In vitro-cultured plants of two citrus genotypes with contrasting tolerance to salt- and heat-stress conditions were used as plant material. Proline and phytohormone contents in root exudates from plants subjected to salt or high-temperature conditions were evaluated. In addition, tissue damage and lipid peroxidation together with endogenous levels of chloride, proline, and phytohormones were determined in roots and shoots. Proline was released in larger quantities to the rhizosphere when plants were subjected to salt or heat stress. In each stress condition, the concentration of this amino acid was higher in the exudates obtained from plants tolerant to this particular stress condition. On the other hand, root exudation of phytohormones salicylic acid, indole acetic acid, abscisic acid, and jasmonic acid generally increased under both adverse conditions. Results confirm a phytohormone exudation in citrus plants, which had not been described previously and can have an important role in the rhizosphere communication. Moreover, stress conditions and the different tolerance of each genotype to the particular stress significantly modify the exudation pattern both quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AMF:

Arbuscular mycorrhizal fungi

CC:

Citrange carrizo

CIN:

t-Cinnamic acid

CM:

Citrus macrophylla

IAA:

3-Indole acetic acid

JA:

Jasmonic acid

MDA:

Malondialdehyde

RWC:

Relative water content

SA:

Salicylic acid

References

  • Arbona V, Hossain Z, López-Climent MF, Pérez-Clemente RM, Gómez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132:452–466

    Article  CAS  PubMed  Google Scholar 

  • Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Schenk PM (2014) Plant defence inducers rapidly influence the diversity of bacterial communities in a potting mix. Appl Soil Ecol 84:1–5

    Article  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Article  CAS  Google Scholar 

  • Dardanelli MS, Fernández de Córdoba FJ, Estévez J, Contreras R, Cubo MT, Rodríguez-Carvajal MA, Gil-Serrano AM, López-Baena FJ, Bellogín RA, Manyani H, Ollero FJ, Megías M (2012) Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Appl Soil Ecol 57:31–38

    Article  Google Scholar 

  • De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306

    Article  PubMed  Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography–electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    Article  CAS  PubMed  Google Scholar 

  • García-Legaz MF, Ortiz JM, García-Lidón A, Cerdá A (1993) Effect of salinity on growth, ion content and CO2 assimilation rate in lemon varieties on different rootstocks. Physiol Plant 89:427–432

    Article  Google Scholar 

  • Gómez-cadenas A, Vives V, Zandalinas SI, Manzi M, Sánchez-Pérez AM, Pérez-Clemente RM, Arbona V (2015) Abscisic acid: a versatile phytohormone in plant signaling and beyond. Curr Protein Pept Sci 16:413–434

    Article  PubMed  Google Scholar 

  • Henry A, Doucette W, Norton J, Bugbee B (2007) Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J Environ Qual 36:904–912

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hussain S, Luro F, Costantino G, Ollitrault P, Morillon R (2012) Physiological analysis of salt stress behaviour of citrus species and genera: low chloride accumulation as an indicator of salt tolerance. South Afr J Bot 81:103–112

    Article  CAS  Google Scholar 

  • Iglesias DJ, Levy Y, Gómez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M (2004) Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation. Tree Physiol 24:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arab B e0153

  • Khorassani R, Hettwer U, Ratzinger A, Steingrobe B, Karlovsky P, Claassen N (2011) Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol 11:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RR, Goswani S, Sharma SK, Singh K, Gadpayle KA, Kumar N, Rai GK, Singh M, Rai RD (2012) Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. Int J Plant Physiol Biochem 4:83–91

    CAS  Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida Strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot 62:176–184

    Article  Google Scholar 

  • Marin JA, Andreu P, Carrasco A, Arbeloa A (2010) Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Rev Des Régions Arid 24:722–727

    Google Scholar 

  • Montoliu A, López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2009) A novel in vitro tissue culture approach to study salt stress responses in citrus. Plant Growth Regul 59:179–187

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Otero A, Goñi C, Syverstsen JP (2015) Flooding and soil temperature affect water relations and photosynthesis of citrus rootstock leaves. Acta Hortic 1065:1399–1406

    Article  Google Scholar 

  • Pérez-Clemente RM, Montoliu A, Zandalinas SI, De Ollas C, Gómez-Cadenas A (2012) Carrizo citrange plants do not require the presence of roots to modulate the response to osmotic stress. Sci World J 2012:1–13

    Article  Google Scholar 

  • Regvar M, Gogala N, Zalar P (1996) Effect of jasmonic acid on mycorrhizal Allium sativum. New Phytol 134:703–707

    Article  CAS  Google Scholar 

  • Saadia M, Jamil A, Akram NA, Ashraf M (2012) A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress. Molecules 17:5803–5815

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Hernández-Sánchez V, Marqués S, Molina L (2017) Insights in the regulation of the degradation of PAHs in Novosphingobium sp. HR1a and utilization of this regulatory system as a tool for the detection of PAHs. Sci Total Environ 590–591:381–393

    Article  PubMed  Google Scholar 

  • Tawaraya K, Horie R, Akiko S, Shinano T, Wagatsuma T, Saito K, Oikawa A (2013) Metabolite profiling of shoot extracts, root extracts, and root exudates of rice plant under phosphorus deficiency. J Plant Nutr 36:1138–1159

    Article  CAS  Google Scholar 

  • Tawaraya K, Horie R, Shinano T, Wagatsuma T, Saito K, Oikawa A (2014) Metabolite profiling of soybean root exudates under phosphorus deficiency. Soil Sci Plant Nutr 60:679–694

    Article  CAS  Google Scholar 

  • Trivedi P, Spann T, Wang N (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb Ecol 62:324–336

    Article  CAS  PubMed  Google Scholar 

  • Valentinuzzi F, Pii Y, Vigani G, Lehmann M, Cesco S, Mimmo T (2015) Phosphorus and iron defciencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria x ananassa. J Exp Bot 66:6483–6495

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela CE, Acevedo-Acevedo O, Miranda GS et al (2016) Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J Exp Bot 67:4209–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vílchez S, Molina L, Ramos C, Ramos JL (2000) Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates. J Bacteriol 182:91–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Vranova V, Rejsek K, Skene KR, Janous D, Formanek P (2013) Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review. J Plant Nutr Soil Sci 176:175–199

    Article  CAS  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kallem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Yazaki K, Sugiyama A, Morita M, Shitan N (2008) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev 7:513–524

    Article  CAS  Google Scholar 

  • Zandalinas SI, Rivero RM, Martínez V, Gómez-Cadenas A, Arbona V (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Sales C, Beltrán J, Gómez-Cadenas A, Arbona V (2017) Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front Plant Sci 7:Art. 1954

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO) and Universitat Jaume I through Grant Nos. AGL2016-76574-R and UJI-B2016-23, respectively. V.V.-P. was recipient of a predoctoral contract from the Universitat Jaume I (PREDOC/2013/31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa María Pérez-Clemente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Prakash P. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vives-Peris, V., Gómez-Cadenas, A. & Pérez-Clemente, R.M. Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant Cell Rep 36, 1971–1984 (2017). https://doi.org/10.1007/s00299-017-2214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2214-0

Keywords

Navigation