Advertisement

Plant Cell Reports

, Volume 36, Issue 11, pp 1689–1700 | Cite as

Expression patterns of the native Shrunken-2 promoter in Sorghum bicolor visualised through use of the GFP reporter gene

  • Kyle C. Lamont
  • Stephen R. Mudge
  • Guoquan Liu
  • Ian D. Godwin
Original Article

Abstract

Key message

The AGPase large subunit (shrunken-2) promoter was demonstrated to be active in the placentochalaza and endosperm of developing grain as well as the root tips in transgenic sorghum.

Abstract

The temporal and spatial expression patterns of the Sorghum bicolor Shrunken-2 (Sh2) promoter were evaluated using the green fluorescence protein reporter gene (gfp) in transgenic sorghum, within the context of upregulating starch biosynthesis in the developing grain. GFP fluorescence was analysed throughout development in various tissue types using confocal laser scanning microscopy techniques. Sh2 promoter activity was first detected in the placentochalaza region of the developing caryopsis and apoplasm adjacent to the nucellar epidermis at 7 days post anthesis (dpa) where fluorescence remained relatively constant until 17 dpa. Fluorescence in this region weakened by 20 dpa and disappeared by 25 dpa. Expression was also detected in the developing endosperm, but not until 12 dpa, continuing until 25 dpa. Whilst the endosperm expression was expected, the fluorescence detected in the placentochalaza was completely unexpected. Although transcript presence does not mean the resulting biochemistry is also present, these preliminary findings may suggest alternate spatial activity of ADP-glucose pyrophosphorylase prior to uptake by the developing grain. Sh2 promoter activity was also unexpectedly detected in the root tips at all developmental time points. Sh2 promoter activity was not detected in any reproductive floral tissue (both pre and post anthesis) or in pollen. Similarly, no expression was detected in leaf tissue at any stage.

Keywords

AGPase Placentochalaza Root tip Endosperm Gene expression Green fluorescent protein 

Notes

Acknowledgements

We are thankful to the ARC (Australian Research Council) and the GRDC (Grains Research and Development Corporation) for their financial support on the project UQ00076.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2017_2182_MOESM1_ESM.docx (626 kb)
Supplementary Figure PCR detection of the nptII gene in putative transgenic lines. Lines from left to right: B no template control, U 1-5 samples of putative Ubi:gfp lines, L 2-log DNA ladder (NEW ENGLAND BIOLABS), S 1-10 samples of putative Sh2:gfp lines, C 1-2 non-transgenic Tx430 control (DOCX 626 kb)

References

  1. Belton PS, Taylor JRN (2004) Sorghum and millets: protein sources for Africa. Trends Food Sci Technol 15(2):94–98. doi: 10.1016/j.tifs.2003.09.002 CrossRefGoogle Scholar
  2. Chrimes D, Rogers HJ, Francis D, Jones HD, Ainsworth C (2005) Expression of fission yeast cdc25 driven by the wheat ADP-glucose pyrophosphorylase large subunit promoter reduces pollen viability and prevents transmission of the transgene in wheat. New Phytol 166(1):185–192. doi: 10.1111/j.1469-8137.2004.01299.x CrossRefPubMedGoogle Scholar
  3. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5(3):213–218. doi: 10.1007/bf01969712 CrossRefPubMedGoogle Scholar
  4. Comparot-Moss S, Denyer K (2009) The evolution of the starch biosynthetic pathway in cereals and other grasses. J Exp Bot 60(9):2481–2492. doi: 10.1093/jxb/erp141 CrossRefPubMedGoogle Scholar
  5. Denyer K, Dunlap F, Thorbjørnsen T, Keeling P, Smith AM (1996) The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol 112(2):779–785CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dwivedi KK, Roche DJ, Clemente TE, Ge Z, Carman JG (2014) The OCL3 promoter from Sorghum bicolor directs gene expression to abscission and nutrient-transfer zones at the bases of floral organs. Ann Bot 114(3):489–498. doi: 10.1093/aob/mcu148 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Espada J (1962) Enzymic synthesis of adenosine diphosphate glucose from glucose 1-phosphate and adenosine triphosphate. J Biol Chem 237(12):3577–3581Google Scholar
  8. Felker FC (1980) Movement of 14C-labeled assimilates into kernels of Zea mays L.: III. An anatomical examination and microautoradiographic study of assimilate transfer. Plant Physiol 65(5):864–870CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hannah LC, Futch B, Bing J, Shaw JR, Boehlein S, Stewart JD, Beiriger R, Georgelis N, Greene T (2012) A shrunken-2 transgene increases maize yield by acting in maternal tissues to increase the frequency of seed development. Plant Cell 24(6):2352–2363. doi: 10.1105/tpc.112.100602 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kladnik A, Chamusco K, Dermastia M, Chourey P (2004) Evidence of programmed cell death in post-phloem transport cells of the maternal pedicel tissue in developing caryopsis of maize. Plant Physiol 136(3):3572–3581CrossRefPubMedPubMedCentralGoogle Scholar
  11. Li N, Zhang S, Zhao Y, Li B, Zhang J (2011) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233(2):241–250. doi: 10.1007/s00425-010-1296-5 CrossRefPubMedGoogle Scholar
  12. Liu G, Godwin ID (2012) Highly efficient sorghum transformation. Plant Cell Rep 31(6):999–1007. doi: 10.1007/s00299-011-1218-4 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Liu G, Campbell BC, Godwin ID (2014) Sorghum genetic transformation by particle bombardment. Methods Mol Biol 1099:219–234. doi: 10.1007/978-1-62703-715-0_18 CrossRefPubMedGoogle Scholar
  14. Liu G, Gilding EK, Godwin ID (2015) A robust tissue culture system for sorghum [Sorghum bicolor (L.) Moench]. South Afr J Bot 98:157–160. doi: 10.1016/j.sajb.2015.03.179 CrossRefGoogle Scholar
  15. Liu G, Lamont KC, Ahmad N, Tomkins A, Mudge SR, Gilding EK, Godwin ID (2016) The functionality of α-kafirin promoter and α-kafirin signal peptide. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-016-1093-3 Google Scholar
  16. Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M (2015) MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol 56(1):e6. doi: 10.1093/pcp/pcu187 CrossRefPubMedGoogle Scholar
  17. Meyer FD, Talbert LE, Martin JM, Lanning SP, Greene TW, Giroux MJ (2007) Field evaluation of transgenic wheat expressing a modified ADP-glucose pyrophosphorylase large subunit. Crop Sci 47(1):336–342. doi: 10.2135/cropsci2006.03.0160 CrossRefGoogle Scholar
  18. Muchow RC (1989) Comparative productivity of maize, sorghum and pearl millet in a semi-arid tropical environment I. Yield potential. Field Crops Res 20(3):191–205. doi: 10.1016/0378-4290(89)90079-8 CrossRefGoogle Scholar
  19. Mudge SR, Basnayake SWV, Moyle RL, Osabe K, Graham MW, Morgan TE, Birch RG (2013) Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnol J 11(4):502–509. doi: 10.1111/pbi.12038 CrossRefPubMedGoogle Scholar
  20. Sakulsingharoj C, Choi S-B, Hwang S-K, Edwards GE, Bork J, Meyer CR, Preiss J, Okita TW (2004) Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic ADP-glucose pyrophosphorylase. Plant Sci 167(6):1323–1333. doi: 10.1016/j.plantsci.2004.06.028 CrossRefGoogle Scholar
  21. Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci 99(3):1724–1729. doi: 10.1073/pnas.022635299 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Smidansky ED, Martin JM, Hannah LC, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216(4):656–664PubMedGoogle Scholar
  23. Smidansky E, Meyer F, Blakeslee B, Weglarz T, Greene T, Giroux M (2007) Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225(4):965–976. doi: 10.1007/s00425-006-0400-3 CrossRefPubMedGoogle Scholar
  24. Tang A-C, Boyer JS (2013) Differences in membrane selectivity drive phloem transport to the apoplast from which maize florets develop. Ann Bot 111(4):551–562. doi: 10.1093/aob/mct012 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Thorbjørnsen T, Villand P, Denyer K, Olsen OA, Smith AM (1996) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J 10(2):243–250. doi: 10.1046/j.1365-313X.1996.10020243.x CrossRefGoogle Scholar
  26. Thorneycroft D, Hosein F, Thangavelu M, Clark J, Vizir I, Burrell MM, Ainsworth C (2003) Characterization of a gene from chromosome 1B encoding the large subunit of ADPglucose pyrophosphorylase from wheat: evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm. Plant Biotechnol J 1(4):259–270. doi: 10.1046/j.1467-7652.2003.00025.x CrossRefPubMedGoogle Scholar
  27. Tuncel A, Okita TW (2013) Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci 211:52–60. doi: 10.1016/j.plantsci.2013.06.009 CrossRefPubMedGoogle Scholar
  28. Wang H-H, Wang Z, Wang F, Gu Y-J, Liu Z (2012) Development of basal endosperm transfer cells in Sorghum bicolor (L.) Moench and its relationship with caryopsis growth. Protoplasma 249(2):309. doi: 10.1007/s00709-011-0281-6 CrossRefPubMedGoogle Scholar
  29. Zheng Y, Xiong F, Wang Z, Gu Y (2015) Observation and investigation of three endosperm transport tissues in sorghum caryopses. Protoplasma 252(2):705–714. doi: 10.1007/s00709-014-0705-1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kyle C. Lamont
    • 1
  • Stephen R. Mudge
    • 1
  • Guoquan Liu
    • 1
  • Ian D. Godwin
    • 1
  1. 1.School of Agriculture and Food SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations