Skip to main content

Quantitative trait loci from identification to exploitation for crop improvement

Abstract

Advancement in the field of genetics and genomics after the discovery of Mendel’s laws of inheritance has led to map the genes controlling qualitative and quantitative traits in crop plant species. Mapping of genomic regions controlling the variation of quantitatively inherited traits has become routine after the advent of different types of molecular markers. Recently, the next generation sequencing methods have accelerated the research on QTL analysis. These efforts have led to the identification of more closely linked molecular markers with gene/QTLs and also identified markers even within gene/QTL controlling the trait of interest. Efforts have also been made towards cloning gene/QTLs or identification of potential candidate genes responsible for a trait. Further new concepts like crop QTLome and QTL prioritization have accelerated precise application of QTLs for genetic improvement of complex traits. In the past years, efforts have also been made in exploitation of a number of QTL for improving grain yield or other agronomic traits in various crops through markers assisted selection leading to cultivation of these improved varieties at farmers’ field. In present article, we reviewed QTLs from their identification to exploitation in plant breeding programs and also reviewed that how improved cultivars developed through introgression of QTLs have improved the yield productivity in many crops.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abe Y, Mieda K, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y (2010) TheSMALL AND ROUND SEED1 (SRS1/DEP2)gene is involved in the regulation of seed size in rice. Genes Genet Syst 85:327–339

    CAS  PubMed  Article  Google Scholar 

  2. Acosta-García G, Autran D, Vielle-Calzada JP (2004) Enhancer detection and gene trapping as tools for functional genomics in plants. Recomb Gene Expr Rev Protoc 267:397–414

    Google Scholar 

  3. Ahn S, Tanksley SD (1993) Comparative linkage maps of rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Anderson JA, Chao S, Liu S (2007) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci 47:S112–S119

    Article  Google Scholar 

  5. Ando T, Yamamoto T, Shimizu T, Ma XF, Shomura A, Takeuchi Y, Lin SY, Yano M (2008) Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor Appl Genet 116:881–890

    PubMed  Article  Google Scholar 

  6. Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21(4):610–617

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Ariani A, Berny Mier y Teran JC, Gepts P (2016) Genome-wide identification of SNPs and copy number variation in common bean (Phaseolus vulgarisL.) using genotyping-by-sequencing (GBS). Mol Breed 36:87

    Article  CAS  Google Scholar 

  8. Asad MA, Bai B, Lan C, Yan J, Xia X, Zhang Y, He Z (2014) Identification of QTL for adult-plant resistance to pow dery mildew in Chinese w heat landrace Pingyuan 50. Crop J 2(5):308–314

    Article  Google Scholar 

  9. Ashikari M, Matsuoka M (2002) Application of rice genomics to plant biology and breeding. Bot Bull Acad Sin 43:1–11

    CAS  Google Scholar 

  10. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    CAS  PubMed  Article  Google Scholar 

  11. Bajgain P, Rouse M, Bulli P, Bhavani S, Gordon T, Wanyera R, Njau P, Legesse W, Anderson J, Pumphrey M (2015) Association mapping of North American spring wheat breeding germplasm reveals loci conferring resistance to Ug99 and other African stem rust races. BMC Plant Biol 15:1–19

    Article  CAS  Google Scholar 

  12. Bandillo N, Raghavan C, Muyco PA, Sevilla MA, Lobina IT, Dilla-Ermita CJ, Tung CW, McCouch S, Thomson M, Mauleon R, Singh RK (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11

    PubMed  PubMed Central  Article  Google Scholar 

  13. Barchi L, Lanteri S, Portis E, Acquadro A, Vale G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Bargsten JW, Nap JP, Sanchez-Perez GF, van Dijk AD (2014) Prioritization of candidate genes in QTL regions based on associations between traits and biological processes. BMC Plant Biol 14(1):1

    Article  CAS  Google Scholar 

  15. Barrero JM, Cavanagh C, Verbyla KL, Tibbits JF, Verbyla AP, Huang BE, Rosewarne GM, Stephen S, Wang P, Whan A, Rigault P (2015) Transcriptomic analysis of wheat near-isogenic lines identifiesPM19-A1andA2as candidates for a major dormancy QTL. Genome Biol 16(1):1

    CAS  Article  Google Scholar 

  16. Bateson W (1909) Heredity and variation in modern lights. In: Seward AC (ed) Darwin and modern science. Cambridge University Press, Cambridge, pp 85–91

    Google Scholar 

  17. Bateson W, Punnet RC (1905) Experimental studies in the physiology of heredity. Rep Evol Comm R Soc 2:1–55

    Google Scholar 

  18. Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    CAS  PubMed  Article  Google Scholar 

  19. Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci USA 27:499–506

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Begum H, Spindel JE, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, McCouch SR (2015) Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS One 10(3): e0119873

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144

    CAS  PubMed  Article  Google Scholar 

  22. Ben-Ari G, Lavi U (2012) Marker assisted selection in plants. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture prospects for 21st century. Elsevier Publisher, USA, pp 163–168

    Chapter  Google Scholar 

  23. Bentsink L, Hanson J, Hanhart CJ, Blankestijn-de Vries H et al (2010) Natural variation for seed dormancy in Arabidopsis i s regulated by additive genetic and molecular pathways. Proc Natl Acad Sci USA 10:4264–4269

    Article  CAS  Google Scholar 

  24. Benzer S (1961) On the topography of the genetic fine structure. Proc Natl Acad Sci USA 47:403–426

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  26. Bernatzky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112(4):887–898

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bilal M, Saeed M, Nasir IA, Tabassum B, Zameer M, Khan A, Tariq M, Javed MA, Husnain T (2015) Association mapping of cane weight and tillers per plant in sugarcane. Biotechnol Biotechnol Equip 29(4):617–623

    CAS  Article  Google Scholar 

  28. Bingham PM, Levis R, Rubin GM (1981) Cloning of DNA sequences from the white locus of D. melanogasterby a novel and general method. Cell 25:693–704

    CAS  PubMed  Article  Google Scholar 

  29. Bocianowski J (2012a) A comparison of two methods to estimate additive-by-additive interaction of QTL effects by a simulation study. J Theor Biol 308:20–24

    PubMed  Article  Google Scholar 

  30. Bocianowski J (2012b) Analytical and numerical comparisons of two methods of estimation of additive × additive interaction of QTL effects. Sci Agric 69:240–246

    Article  Google Scholar 

  31. Bocianowski J (2012c) Using weighted multiple linear regression in estimation of QTL-by-QTL epistasis effects. Genet Mol Biol 35:802–809

    PubMed  PubMed Central  Article  Google Scholar 

  32. Bommert P, Nagasawa NS, Jackson D (2015) Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature 45(3):334–337

    Google Scholar 

  33. Borojevic K, Borojevic K (2005) The transfer and history of “reduced height genes” (Rht) in wheat from Japan to Europe. J Hered 96:455–459

    CAS  PubMed  Article  Google Scholar 

  34. Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2014) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot 65:6251–6263

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bottema CD, Sommer SS (1993) PCR amplification of specific alleles: rapid detection of known mutations and polymorphisms. Mutat Res 288:93–102

    CAS  PubMed  Article  Google Scholar 

  37. Bouchet S, Olatoye MO, Marla S, Wempe B, Perumal R, Tesso T, Tuinstra M, Yu J, Morris GP (2015) Genomic analysis of a Sorghum NAM population and high resolution mapping of flowering time. Plant and animal genome conference, San Diego, CA, Poster no. O563

  38. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F (2010) Linkage and association mapping of Arabidopsis thalianaflowering time in nature. PLoS Genet 6(5):e1000940

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Brueggemann R, Rostocks N, Kudrna N, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust resistance gene Rpg1 is a novel disease-resistance gene with homology to a receptor kinase. Proc Natl Acad Sci USA 95:9328–9333

    Article  CAS  Google Scholar 

  40. Buckler E, Gore M (2007) An Arabidopsis haplotype map takes root. Nat Genet 39:1056–1057

    CAS  PubMed  Article  Google Scholar 

  41. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM (2009) The genetic architecture of maize flowering time. Science 325:714–718

    CAS  PubMed  Article  Google Scholar 

  42. Caetano-Annolles G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Biotechnology 9:553–557

    Google Scholar 

  43. Cai H, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104(8):1217–1228

    CAS  PubMed  Article  Google Scholar 

  44. Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD (2004) Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci USA 101:15670–15675

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Caniato FF, Hamblin MT, Guimaraes CT, Zhang Z, Schaffert RE, Kochian LV, Magalhaes JV (2014) Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus, AltSB. PLoS One 9(1):e87438

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Carlborg O, Haley CS (2004) Epistasis too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    CAS  PubMed  Article  Google Scholar 

  47. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11(2):215–221

    PubMed  Article  CAS  Google Scholar 

  48. Chaibub Neto E, Ferrara CT, Attie AD, Yandell BS (2008) Inferring causal phenotype networks from segregating populations. Genetics 179:1089–1100

    PubMed  PubMed Central  Article  Google Scholar 

  49. Chen L, Huang L, Min D, Phillips A, Wang S, Madgwick PJ, Parry MA, Hu YG 2012 Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.). PLoS One 7(7):e41570

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Cho YG, Eun MY, Mccouch SR, Chae YA (1994) The semidwarf gene, sd-1, of rice (Oryza sativa L.). II. Molecular mapping and marker-assisted selection. Theor Appl Genet 89:54–59

    CAS  PubMed  Google Scholar 

  51. Chudalayandi S (2011) Enhancer trapping in plants. In: Birchler JA (ed) Plant chromosome engineering: methods and protocols. Spinger Science 701, pp 285–300

  52. Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistue L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Clark RM, Wagler TN, Quijada P, Doebley J (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 38:594–597

    CAS  PubMed  Article  Google Scholar 

  54. Cockerham CC, Zeng ZB (1996) Design with marker loci. Genetics 143:1437–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D, Tapsell C (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA 107(50):21611–21616

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Cockram J, Jones H, Norris C, O’Sullivan DM (2012) Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.). Theor Appl Genet 125(8):1735–1749

    CAS  PubMed  Article  Google Scholar 

  57. Comstock RE (1978) Quantitative genetics in maize breeding. In: Walden DB (ed) Maize breeding and genetics. Wiley, New York, pp 191–206

    Google Scholar 

  58. Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    CAS  Article  Google Scholar 

  59. Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99(21):13606–13611

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Conti V, Roncallo PF, Beaufort V, Cervigni GL, Miranda R, Jensen CA, Echenique VC (2011) Mapping of main and epistatic effect QTLs associated to grain protein and gluten strength using a RIL population of durum wheat. J Appl Genet 52:287–298

    CAS  PubMed  Article  Google Scholar 

  61. Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158:824–834

    CAS  PubMed  Article  Google Scholar 

  62. Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Creighton HB, McClintock B (1931) A correlation of cytological and genetical crossing-over in Zea mays. Proc Natl Acad Sci USA 17:492–497

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, Oliviera YD, Guichard C, Thompson R, Bendahmane A (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510

    CAS  PubMed  Article  Google Scholar 

  68. Deng X, Elomaa P, Nguyen CX, Hytönen T, Valkonen J, Teeri TH (2012) Virus-induced gene silencing for Asteraceae—a reverse genetics approach for functional genomics in Gerbera hybrida. Plant Biotechnol J 10(8):970–978

    CAS  PubMed  Article  Google Scholar 

  69. Ding J, Zhang L, Chen J, Li X, Li Y, Cheng H, Huang R, Zhou B, Li Z, Wang J, Wu J (2015) Genomic dissection of leaf angle in maize (Zea mays L.) using a four-way cross mapping population. PLoS One 10(10):e0141619

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    CAS  PubMed  Article  Google Scholar 

  71. Doebley J, Stec A, Gustus C (1995) teosinte branched1and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141(1):333–346

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Doebley JF, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    CAS  PubMed  Article  Google Scholar 

  73. Doerge RW (2002) Mapping and analysis of quantitative trait loci in and techniques for the study of the genetic experimental populations. Nat Rev Genet 3(1):43–52

    CAS  PubMed  Article  Google Scholar 

  74. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controlsFT -like gene expression independently of Hd1. Genes Dev 18(8):926–936

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Duan CG, Wang CH, Guo HS (2012) Application of RNA silencing to plant disease resistance. Silence 3(1):5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. East EM (1916) Studies on size inheritance in nicotiana. Genetics 1:164–176

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Edae EA, Byrne PF, Manmathan H, Haley SD, Moragues M, Lopes MS, Reynolds MP (2013) Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. Plant Genome 6(2):1–13

    CAS  Article  Google Scholar 

  79. Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99(2):175–185

    CAS  PubMed  Article  Google Scholar 

  80. Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183(1):325–335

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. El-Assal SED, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29(4):435–440

    CAS  Article  Google Scholar 

  82. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379–10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7:e1002221

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    CAS  PubMed  Article  Google Scholar 

  86. Felderhoff T, McIntyre L, Saballos A, Vermerris W (2016) Using to map two novel anthracnose resistance loci in Sorghum bicolor. Genes Genomes Genet 6:1935–1948

    Google Scholar 

  87. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci 100(25):15253–15258

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Flassig RJ, Heise S, Sundmacher K, Klamt S (2013) An effective framework for reconstructing gene regulatory networks from genetical genomics data. Bioinformatics 29:246–254

    CAS  PubMed  Article  Google Scholar 

  89. Flingtham JE, Gale MD (1983) The Tom Thumb dwarfing gene Rht3 in wheat. Theor Appl Genet 66:249–256

    Google Scholar 

  90. Frary A, Nesbitt TC, Frary A, Grandillo S, Van Der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289(5476):85–88

    CAS  PubMed  Article  Google Scholar 

  91. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–752

    CAS  PubMed  Article  Google Scholar 

  92. Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trout for tomato yield using interspecific introgressions. Science 305:1786–1789

    CAS  PubMed  Article  Google Scholar 

  94. Fu J, Keurentjes JJB, Bouwmeester H, America T, Verstappen FWA, Ward JL, Beale MH, de Vos RCH, Dijkstra M, Scheltema RA, Johannes F (2009a) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet 10:1038

    Article  CAS  Google Scholar 

  95. Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009b) A kinase-STARTgene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108:3803–3808

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DGJ, Stewart CN, Tang Y, Wang Z-Y (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 10:443–452

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–542

    CAS  PubMed  Article  Google Scholar 

  99. Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci. doi:10.3389/fpls.2015.01099

    Google Scholar 

  100. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trend Genet 24:408–415

    CAS  Article  Google Scholar 

  102. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    CAS  PubMed  Article  Google Scholar 

  103. Guo B, Sleper DA, Beavis WD (2010) Nested association mapping for identification of functional markers. Genetics 186(1):373–383

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145

    Google Scholar 

  105. Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet 85:109–148

    CAS  PubMed  Google Scholar 

  106. Gyenis L, Yun SJ, Smith KP, Steffenson BJ, Bossolini E, Sanguineti MC, Muehlbauer GJ (2007) Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 50(8):714–723

    CAS  PubMed  Article  Google Scholar 

  107. Hallingback T, Tan BC (2014) Past and present activities and future strategy of bryophyte conservation. Phytotaxa 9(1):266–274

    Article  Google Scholar 

  108. Hanin M, Paszkowski J (2003) Plant genome modification by homologous recombination. Curr Opin Plant Biol 6:157–162

    CAS  PubMed  Article  Google Scholar 

  109. Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–78

    CAS  PubMed  Article  Google Scholar 

  110. Hanson P, Lu SF, Wang JF, Chen W, Kenyon L, Tan CW, Tee KL, Wang YY, Hsu YC, Schafleitner R, Ledesma D (2016) Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci Hortic 201:346–354

    CAS  Article  Google Scholar 

  111. Hartman Y, Hooftman DAP, Schranz ME, van Tienderen PH (2013) QTL analysis reveals the genetic architecture of domestication traits in Crisphead lettuce. Genet Resour Crop Evol 60:1487–1500

    Article  Google Scholar 

  112. Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460(20):1026–1030

    CAS  PubMed  Article  Google Scholar 

  113. Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner MH, Leckband G, Abbadi A, Snowdon RJ (2015) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci 6:221

    PubMed  PubMed Central  Article  Google Scholar 

  114. Hayes F (2003) Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet 37:1–7

    Article  CAS  Google Scholar 

  115. Hebert CG, James JV, Bentley WE (2008) Beyond silencing—engineering applications of RNA interference and antisense technology for altering cellular phenotypes. Curr Opin Biotechnol 19:500–505

    CAS  PubMed  Article  Google Scholar 

  116. Helentjaris T, Slocum M, Wright S, Schaeffer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769

    CAS  PubMed  Article  Google Scholar 

  117. Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV, Vasquez-Gross H, Akhunova A, Akhunov E, Dubcovsky J, Tai TH, Comai L (2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26:1382–1397

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    CAS  PubMed  Article  Google Scholar 

  119. Holland JB (2015) MAGIC maize: a new resource for plant genetics. Genome Biol 16:163

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. Holloway B, Li B (2010) Expression QTLs: applications for crop improvement. Mol Breed 26:381–391

    Article  Google Scholar 

  121. Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164(2):655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at theDEP1locus enhances grain yield in rice. Nat Genet 41:494–497

    CAS  PubMed  Article  Google Scholar 

  123. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    CAS  PubMed  Article  Google Scholar 

  124. Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    CAS  PubMed  Article  Google Scholar 

  125. Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    PubMed  Article  Google Scholar 

  126. Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132–138

    CAS  PubMed  Article  Google Scholar 

  128. Ikeda K, Ito M, Nagasawa ON, Kyozuka J, Nagato Y (2007) Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51:1030–1040

    CAS  PubMed  Article  Google Scholar 

  129. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800

    Article  CAS  Google Scholar 

  130. Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertensive rat. Cell 67:213–224

    CAS  PubMed  Article  Google Scholar 

  131. Jadhav MS (2015) An update on important functionally characterized genes/QTLs of agronomic importance in crop plants. Indian Res J Genet Biotechnol 7(1):44–49

    Google Scholar 

  132. James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947

    CAS  PubMed  Article  Google Scholar 

  133. Jannink JL, Wu XL (2003) Estimating allelic number and identity in state of QTLs in interconnected families. Genet Res 81:133–144

    CAS  PubMed  Article  Google Scholar 

  134. Jannink JL, Bink MCAM, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342

    CAS  PubMed  Article  Google Scholar 

  135. Jansen RC (2003) Studying complex biological systems using multifactorial perturbation. Nat Rev Genet 4(2):145–151

    CAS  PubMed  Article  Google Scholar 

  136. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    CAS  PubMed  Article  Google Scholar 

  137. Jansen RC, Tesson BM, Fu J, Yang Y, McIntyre LM (2009) Defining gene and QTL networks. Curr Opin Plant Biol 12:241–246

    CAS  PubMed  Article  Google Scholar 

  138. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    CAS  PubMed  Article  Google Scholar 

  139. Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443):91–95

    CAS  PubMed  Article  Google Scholar 

  140. Jiang Z, Zhang B, Teng W, Han Y, Zhao X, Sun D, Zhang Z, Li W (2011) Impact of epistasis and QTL × environmental interaction on the oil filling rate of soybean seed at different developmental stages. Euphytica 177:431–442

    Article  Google Scholar 

  141. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 4:541–544

    Article  CAS  Google Scholar 

  142. Jiao Y, Burke J, Chopra R, Burow G, Chen J, Wang B, Hayes C, Emendack Y, Ware D, Xin Z (2016) A Sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell 28(7):1551–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Jin J, Huang W, Gao JP, Yang J, ShiM, Zhu MZ, Luo D, Lin HX (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40:1365–1369

    CAS  PubMed  Article  Google Scholar 

  144. Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9:883–890

    CAS  PubMed  Article  Google Scholar 

  145. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    CAS  PubMed  Article  Google Scholar 

  146. Jourdan M, Gagné S, Dubois-Laurent C, Maghraoui M, Huet S, Suel A, Hamama L, Briard M, Peltier D, Geoffriau E (2015) Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an original broad unstructured population. PLoS One 10(1):e0116674

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. Kachroo A, Ghabrial S (2012) Virus-induced gene silencing in soybean. Methods Mol Biol 894:287–297

    CAS  PubMed  Article  Google Scholar 

  148. Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinumL.). Sci Rep 5:15296

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants; where are we now? Heredity (Edinb.) 80:137–142

    Article  Google Scholar 

  150. Kessel R, Rowe PR (1974) Inheritance of two qualitative traits and a proposed genetic map for their linkage group in diploid potatoes. Potato Res 17:283–295

    Article  Google Scholar 

  151. King RC (1975) Handbook of genetics, vol 2. Plenum Press, New York

    Book  Google Scholar 

  152. Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y (2010) A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol 51:1315–1329

    CAS  PubMed  Article  Google Scholar 

  153. Kliebenstein D (2009) Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol 60:93–114

    CAS  PubMed  Article  Google Scholar 

  154. Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T (2001) Gene duplication and the diversification of secondary metabolism: side chain modification of glucosinolates in Arabidopsis thaliana. Plant Cell 13:681–693

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Kloosterman B, Oortwijn M, America T, de Vos R, Visser RG, Bachem CW (2010) From QTL to candidate gene: genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genomics 11(1):1

    Article  CAS  Google Scholar 

  156. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of theArabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43(10):1096–1105

    CAS  PubMed  Article  Google Scholar 

  157. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-domonant ecotype-specific PCR-based markers. Plant J 4:403–410

    CAS  PubMed  Article  Google Scholar 

  158. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott RA (2009) Multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5(7):e1000551

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. Krajewski P, Bocianowski J, Gawłowska M, Kaczmarek Z, Pniewski T, Święcicki W, Wolko B (2012) QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183(3):323–336

    CAS  Article  Google Scholar 

  160. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) Resistance to multiple fungal pathogens in wheat a putative ABC transporter confers durable. Science 323:1360

    CAS  PubMed  Article  Google Scholar 

  161. Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42:459–463

    CAS  PubMed  Article  Google Scholar 

  162. Krishnan A, Guiderdoni E, An G, Hsing YI, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T (2003) Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci USA 100:14587–14592

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. Kumar A, Kumar J, Singh R, Garg T, Chhuneja P, Balyan HS, Gupta PK (2009) QTL analysis for grain colour and pre-harvest sprouting in bread wheat. Plant Sci 177:114–122

    CAS  Article  Google Scholar 

  165. Kumar J, Mir RR, Kumar N, Kumar A, Mohan A, Prabhu KV, Balyan HS, Gupta PK (2010) Marker-assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breed 129(6):617–621

    CAS  Article  Google Scholar 

  166. Kumar J, Choudhary AK, Solanki RK, Pratap A (2011a) Towards marker-assisted selection in pulses: a review. Plant Breed 130(3):297–313

    CAS  Article  Google Scholar 

  167. Kumar J, Jaiswal V, Kumar A, Kumar N, Mir RR, Kumar S, Dhariwal R, Tyagi S, Khandelwal M, Prabhu KV, Prasad R (2011b) Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crops Res 123(3):226–233

    Article  Google Scholar 

  168. Kumar B, Talukdar A, Bala I, Verma K, Lal SK, Sapra RL, Namita B, Chander S, Tiwari R (2014) Population structure and association mapping studies for important agronomic traits in soybean. J Genet 93(3):775–784

    PubMed  Article  Google Scholar 

  169. Kumar V, Singh A, Mithra SA, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22(2):133–145

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43(2):163–168

    CAS  PubMed  Article  Google Scholar 

  171. Kusaba M (2004) RNA interference in crop plants. Curr Opin Biotechnol 15(2):139–143

    CAS  PubMed  Article  Google Scholar 

  172. Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein D, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807. &nbsp

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121(1):185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Lark KG, Chase K, Adler FR, Mansur LM, Orf JJ (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA 92:4656–4660

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. Lazarow K, Lütticke S (2009) An Ac/Ds-mediated gene trap system for functional genomics in barley. BMC Genomics 10(1):1

    Article  CAS  Google Scholar 

  176. Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M, Pagny G, Moussy F, Sanchez M, Baker D, Clarke J (2009a) Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnol 7:430–441

    CAS  Article  Google Scholar 

  177. Le Signor C, Dalamis M, Brunaud V, Thompson R, Bendahmane A (2009b) High throughput identification of Pisum sativum mutant lines by TILLING: a tool for crop improvement using either forward or reverse genetic approaches. Grain Legumes 52:18–19

    Google Scholar 

  178. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M (2003) Control of tillering in rice. Nature 422:618–621

    CAS  PubMed  Article  Google Scholar 

  179. Li ZK, Fu BY, Gao YM, Xu JL, Ali J, Lafitte R, Jiang YZ, Domingo-Rey J, Vijayakumar CHM, Dwivedi D, Maghirang R, Zheng TQ, Zhu LH (2005) Genomic-wide introgression lines and a forward genetics strategy for genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol 59(1):33–52

    CAS  PubMed  Article  Google Scholar 

  180. Li Y, Breitling R, Jansen RC (2008) Generalizing genetical genomics: getting added value from environmental perturbation. Trends Genet 24:518–524

    PubMed  Article  CAS  Google Scholar 

  181. Li SB, Qian Q, Fu ZM, Zeng DL, Meng XB, Kyozuka J, Maekawa M, Zhu XD, Zhang J, Li JY, Wang YH (2009) Short panicle 1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58:592–605

    CAS  PubMed  Article  Google Scholar 

  182. Li ZM, Ding JQ, Wang RX, Chen JF, Sun XD, Chen W, Song WB, Dong HF, Dai XD, Xia ZL, Wu JY (2011a) A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet 52:403–406

    PubMed  Article  Google Scholar 

  183. Li Y, Böck A, Haseneyer G, Korzun V, Wilde P, Schön CC, Ankerst DP, Bauer E (2011b) Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC Plant Biol 11:146

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  184. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y (2011c) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269

    CAS  PubMed  Article  Google Scholar 

  185. Li J, Yuan Y, Lu Z, Yang L, Gao R, Lu J, Li J, Xiong G (2012) Glabrous Rice 1, encoding a homeodomain protein, regulates trichome development in rice. Rice 5:32–41

    PubMed  PubMed Central  Article  Google Scholar 

  186. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45(1):43–50

    CAS  PubMed  Article  Google Scholar 

  187. Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N (2014) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21(4):355–367

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  188. Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44(6):720–724

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    CAS  PubMed  Article  Google Scholar 

  190. Liu W, Gowda M, Steinhoff J, Maurer HP, Würschum T, Longin CF, Cossic F, Reif JC (2011) Association mapping in an elite maize breeding population. Theor Appl Genet 123:847–858

    PubMed  Article  Google Scholar 

  191. Liu Y, Wang L, Deng M, Li Z, Lu Y, Wang J, Wei Y, Zheng Y (2015) Genome-wide association study of phosphorus-deficiency-tolerance traits inAegilops tauschii. Theor Appl Genet 128(11):2203–22012

    CAS  PubMed  Article  Google Scholar 

  192. Long Y, Zhang C, Me J (2008) Challenges in QTL analysis in crops. J Crop Sci Biotechnol 11(1):7–12

    Google Scholar 

  193. Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey MJ (2007) SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics 176(2):789–800

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. Luo Y, Zakaria S, Basyah B, Ma T, Li Z, Yang J, Yin Z (2014) Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight. Rice 7:33

    PubMed  PubMed Central  Article  Google Scholar 

  195. Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    CAS  PubMed  Article  Google Scholar 

  196. Mackay IJ, Bansept-Basler P, Barber T, Bentley AR, Cockram J, Gosman N, Greenland AJ, Horsnell R, Howells R, O’Sullivan DM, Rose GA, Howells PJ (2014) An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. Genes Genomes Genet 4:1603–1610

    Google Scholar 

  197. Magato Y, Yoshimura A (1998) Repeat of the committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newsl 15:13–74

    Google Scholar 

  198. Mammadov JA, Chen W, Ren R, Pai R, Marchione W, Yalçin F, Witsenboer H, Greene TW, Thompson SA, Kumpatla SP (2010) Development of highly polymorphic SNP markers from the complexity reduced portion of maize (Zea mays, L.) genome for use in marker-assisted breeding. Theor Appl Genet 121:577–588

    CAS  PubMed  Article  Google Scholar 

  199. Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H, Fischer J, Maatz H, Kren V, Pravenec M, Hubner N (2006) Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2(10):e172

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  200. Mann VH, Suttiprapa S, Rinaldi G, Brindley PJ (2011) Establishing transgenic schistosomes. PLoS Negl Trop Dis 5:e1230

    PubMed  PubMed Central  Article  Google Scholar 

  201. Manning K, Tor M, Poole M, Hong Y, Thompson AJ et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    CAS  PubMed  Article  Google Scholar 

  202. Mantilla Perez MB, Zhao J, Yin Y, Hu J, Salas Fernandez MG (2014) Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. Theor Appl Genet 127(12):2645–2662

    CAS  PubMed  Article  Google Scholar 

  203. Mao D, Liu T, Xu C, Li X, Xing Y (2011) Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice. Euphytica 180:261–271

    Article  Google Scholar 

  204. Martienssen RA, Doerge RW, Colot V (2005) Epigenomic mapping in Arabidopsis using tiling microarrays. Chromosome Res 13:299–308

    CAS  PubMed  Article  Google Scholar 

  205. Martinez AK, Soriano JM, Tuberosa R, Koumproglou R, Jahrmann T, Salvi S (2016) Yield QTLome distribution correlates with gene density in maize. Plant Sci 242:300–309

    CAS  PubMed  Article  Google Scholar 

  206. Marubodee R, Ogiso-Tanaka E, Isemura T, Chankaew S, Kaga A, Naito K, Ehara H, Tomooka N (2015) Construction of an SSR and RAD-marker based molecular linkage map of Vigna vexillata (L.) A. Rich. PLoS One 10(9):e0138942

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  207. Mather K (1941) Variation and selection of polygenic characters. J Genet 41:159–193

    Article  Google Scholar 

  208. Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics 16(1):1

    CAS  Article  Google Scholar 

  209. Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–3812

    CAS  PubMed  Article  Google Scholar 

  210. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  211. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740

    CAS  PubMed  Article  Google Scholar 

  212. Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA (2000) A high throughput system for transposon tagging and promoter trapping in tomato. Plant J 22(3):265–274

    CAS  PubMed  Article  Google Scholar 

  213. Memelink J (2003) T-DNA activation tagging. Methods Mol Biol 236:345–362

    CAS  PubMed  Google Scholar 

  214. Meng L, Guo L, Ponce K, Zhao X, Ye G (2016) Characterization of three rice multiparent advanced generation intercross (MAGIC) populations for quantitative trait loci identification. Plant Genome 9:1–14

    Article  Google Scholar 

  215. Mezaka L, Beleidere M, Legzdina L, Rostoks N (2011) Whole genome association mapping identifies naked grain locus nud as determinant of β-glucan content in barley. Agriculture 98:283–292

    Google Scholar 

  216. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88(21):9828–9832

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  217. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  218. Miller CT, Glazer AM, Summers BR, Blackman BK, Norman AR, Shapiro MD, Cole BL, Peichel CL, Schluter D, Kingsley DM (2014) Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait loci. Genetics 197:405–420

    PubMed  PubMed Central  Article  Google Scholar 

  219. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549

    CAS  PubMed  Article  Google Scholar 

  220. Mohamed A, Ali R, Elhassan O, Suliman E, Mugoya C, Masiga CW, Adi E, Hash CT (2014) First products of DNA marker-assisted selection in sorghum released for cultivation by farmers in sub-saharan Africa. Plant Sci Mol Breed 3(1):3

    Article  Google Scholar 

  221. Mohan A, Kulwal PL, Singh R, Kumar V, Mir RR, Kumar J, Prasad M, Balyan HS, Gupta PK (2009) Genome wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica 168:319–329

    CAS  Article  Google Scholar 

  222. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9(1):11–17

    CAS  PubMed  Article  Google Scholar 

  223. Mora F, Castillo D, Lado B, Matus I, Poland J, Belzile F, von Zitzewitz J, del Pozo A (2015) Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a world-wide germplasm collection of spring wheat using SNP markers. Mol Breed 35(2):1–2

    CAS  Article  Google Scholar 

  224. Morgan TH (1910) Sex-limited inheritance in Drosophila. Science 132:120–122

    Article  Google Scholar 

  225. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J (2013) Population genomic and genome-wide association studies of agroclimatic traits in Sorghum. Proc Natl Acad Sci 110(2):453–458

    CAS  PubMed  Article  Google Scholar 

  226. Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18(6):700–714

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  227. Muehlbauer FJ, Rajesh PN (2008) Chickpea, a common source of protein and starch in the semi-arid ropics. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 171–186

    Chapter  Google Scholar 

  228. Muller HJ (1928) The measurement of gene mutation rate in Drosophila, its high variability, and its dependence upon temperature. Genetics 13:279–357

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Muller HJ (1930a) Types of visible variations induced by X-rays in Drosophila. J Genet 22(3):299–334

    Article  Google Scholar 

  230. Muller HJ (1930b) Radiation and genetics. Am Nat 64:246

    Article  Google Scholar 

  231. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erilich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273

    CAS  PubMed  Article  Google Scholar 

  232. Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier MC, Delalande C, Bouzayen M, Brunel D (2011) Increase in tomato locule number is controlled by two key SNP located near Wuschel. Plant Physiol 156:2244–2254

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  233. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  234. Nagel M, Kranner I, Neumann K, Rolletschek H, Seal CE, Colville L, Fernanadez Marin BE, Börner A (2015) Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant Cell Environ 38(6):1011–1022

    CAS  PubMed  Article  Google Scholar 

  235. Narayana BKT (2013) Candidate gene based association study for nitrogen use efficiency and associated traits in maize. Dissertation, 13017. Lowa State University, USA

    Google Scholar 

  236. Neeraja CN, Vemireddy LR, Malathi S, Siddiq EA (2009) Identification of alternate dwarfing gene sources to widely used Dee-Gee-Woo-Gen allele of sd1 gene by molecular and biochemical assays in rice (Oryza sativa L.). Electron J Biotechnol 12(3):7–8

    Article  CAS  Google Scholar 

  237. Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJ, Morrell PL, Blake TK, Horsley RD, Smith KP, Muehlbauer GJ (2016) Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild × cultivated barley. Genetics 203(3):1453–1467

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  238. Nilsson-Ehle H (1909) Kreuzungsuntersuchungen an Hafer und Weizen. Lunds Univ. Arsskr., N. F. Afd. 2, Bd

  239. O’Brien SJ (1984) Genetic maps: a compilation of linkage and restriction maps of genetically studied organisms, vol 3. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  240. Ohsumi A, Takai T, Ida M, Yamamoto T, Arai-Sanoh Y, Yano M, Ando T, Kondo M (2011) Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crops Res 120(1):68–75

    Article  Google Scholar 

  241. Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  242. Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics 16(1):1

    Article  CAS  Google Scholar 

  243. Pallotta M, Schnurbusch T, Hayes J, Hay A, Baumann U, Paull J, Langridge P, Sutton T (2014) Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature 514:88–891

    CAS  PubMed  Article  Google Scholar 

  244. Parisseaux B, Bernardo R (2004) In silico mapping of quantitative trait loci in maize. Theor Appl Genet 109:508–514

    CAS  PubMed  Article  Google Scholar 

  245. Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP, Le QH, Chauchard B, Verschave P, Causse M (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J 13(4):565–577

    CAS  PubMed  Article  Google Scholar 

  246. Pascual L, Albert E, Sauvage C, Duangjit J, Bouchet JP, Bitton F, Desplat N, Brunel D, Le Paslier MC, Ranc N, Bruguier L (2016) Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Sci 242:120–130

    CAS  PubMed  Article  Google Scholar 

  247. Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang Chun-Xiao, Katsar CS, Lan Tien-Hung, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  248. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannag M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Article  Google Scholar 

  249. Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157(4):1820–1831

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  250. Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES (2013) The genetic architecture of maize stalk strength. PLoS One 8(6):e67066

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  251. Peng JH, Ronin Y, Fahima T, Röder MS, Li YC, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  252. Peng B, Kong H, Li Y, Wang L, Zhong M, Sun L, Gao G, Zhang Q, Luo L, Wang G, Xie W (2014) OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5:4847

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  253. Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 41(6147):786–788

    Article  CAS  Google Scholar 

  254. Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map- based cloning approaches. Trends Plant Sci 10:484–491

    Article  CAS  Google Scholar 

  255. Peterson GW, Dong Y, Horbach C, Fu YB (2014) Genotyping-by-sequencing for plant genetic diversity analysis. A lab guide for SNP genotyping. Diversity 6(4):665–680

    CAS  Article  Google Scholar 

  256. Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480

    CAS  PubMed  Article  Google Scholar 

  257. Piao RH, Jiang WZ, Ham TH, Choi MS, Qiao YL, Chu SH, Park JH, Woo MO, Jin ZX, An G, Lee JY, Koh HJ (2009) Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet 119:1497–1506

    CAS  PubMed  Article  Google Scholar 

  258. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5(3):92–102

    CAS  Article  Google Scholar 

  259. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested associationmapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  260. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  261. Qian Q, Guo LB, Yang CD (2007) Gene-based designed breeding in rice. Beijing Science Press, Beijing, p 519

    Google Scholar 

  262. Qu CM, Li SM, Duan XJ, Fan JH, Jia LD, Zhao HY, Lu K, Li JN, Xu XF, Wang R (2015) Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L. Genes 6(4):1215–1229

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  263. Ramos ML, Huntley JJ, Maleki SJ, Ozias-Akins P (2009) Identification and characterization of a hypoallergenic ortholog of Ara h 2.01. Plant Mol Biol 69:325–335

    CAS  PubMed  Article  Google Scholar 

  264. Ranc N, Munos S, Xu J, Le Paslier MC, Chauveau A, Bounon R, Rolland S, Bouchet JP, Brunel D, Causse M (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. Genes Genomes Genet 2(8):853–864

    CAS  Google Scholar 

  265. Rawat N, Pumphrey M, Akhunov E, Anderson JA, Gill BS (2016) Map-based cloning reveals the origin of Fhb1 gene in wheat. Plant and animal genome conference XXIV, San Diego

  266. Ré DA, Raud B, Chan RL, Baldwin IT, Bonaventure G (2012) RNAi-mediated silencing of the HD-Zipgene HD20 in Nicotiana attenuata affects benzyl acetone emission from corollas via ABA levels and the expression of metabolic genes. BMC Plant Biol 12(1):1

    Article  CAS  Google Scholar 

  267. Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022

    CAS  PubMed  Article  Google Scholar 

  268. Reif JC, Liu W, Gowda M, Maurer HP, Mohring J, Fischer S, Schechert A, Würschum T (2010) Genetic basis of agronomically important traits in sugar beet (Beta vulgaris L.) investigated with joint linkage association mapping. Theor Appl Genet 121:1489–1499

    PubMed  Article  Google Scholar 

  269. Remington DL, Thornsberry J, Matsuoka Y, Wilson L, Rinehart Whitt S, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  270. Ren Z, Zheng Z, Chinnusamy V, Zhu J, Cui X, Iida K, Zhu JK (2010) RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proc Natl Acad Sci USA 107:5669–5674

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  271. Richa K, Tiwari IM, Kumari M, Devanna BN, Sonah H, Kumari A, Sharma TR (2016) Functional characterization of novel chitinase genes present in the sheath blight resistance QTL:qSBR11-1 in rice line Tetep. Front Plant Sci 7:244

    PubMed  PubMed Central  Article  Google Scholar 

  272. Rick CM (1975) The tomato. Hand Genet 2:247–280

    Google Scholar 

  273. Robison FM, Heuberger AL, Brick MA, Prenni JE (2015) Proteome characterization of leaves in common bean. Proteomes 3(3):236–248

    PubMed  PubMed Central  Article  Google Scholar 

  274. Roman H, Ullstrup AJ (1951) The use of A-B translocations to locate genes in maize. Agron J 43:450–454

    Article  Google Scholar 

  275. Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J, Cardle L, Marshall DF, Waugh R (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  276. Rosyara UR, Gonzalez-Hernandez JL, Glover KD, Gedye KR, Stein JM (2009) Family-based mapping of quantitative trait loci in plant breeding populations with resistance to Fusarium head blight in wheat as an illustration. Theor Appl Genet 118:1617–1631

    CAS  PubMed  Article  Google Scholar 

  277. Rubinelli PM, Chuck G, Li X, Meilan R (2013) Constitutive expression of the Corngrass1 micro RNA in poplar affects plant architecture and stem lignin content and composition. Biomass Bioenerg 54:312–321

    CAS  Article  Google Scholar 

  278. Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S, Pillen K, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:Article number: 32586. doi:10.1038/srep32586

    PubMed Central  Article  CAS  Google Scholar 

  279. Sahu BB, Sumit R, Srivastava SK, Bhattacharyya MK (2012) Sequence based polymorphic (SBP) marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome. BMC Genomics 13:20

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  280. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341(6147):783–786

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  281. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs present and future challenges. Trends Plant Sci 10:297–304

    CAS  PubMed  Article  Google Scholar 

  282. Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Curr Opin Biotechnol 32:179–185

    CAS  PubMed  Article  Google Scholar 

  283. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  284. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448

    CAS  PubMed  Article  Google Scholar 

  285. Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J, Pleban T, Zamir D, Fernie AR (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  287. Schnaithmann F, Kopahnke D, Pillen K, Schnaithmann A (2014) First step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet 127(7):1513–1525

    PubMed  Article  Google Scholar 

  288. Schreiber L, Nader-Nieto AC, Schonhals EM, Walkemeier B, Gebhardt C (2014) SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L). Genes Genomes Genet 4(10):1797–1811

    CAS  Google Scholar 

  289. Schuster SC (2008) Next-generation sequencing transform today’s biology. Nat Methods 5:16–18

    CAS  PubMed  Article  Google Scholar 

  290. Sears ER (2008) The aneuplolds of common wheat. Mo Agr Exp Sta Res Bull 572:1–58

    Google Scholar 

  291. Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars the Sub1 locus and beyond. Ann Bot 103:151–160

    CAS  PubMed  Article  Google Scholar 

  292. Shamsudin NA, Swamy BM, Ratnam W, Cruz MT, Raman A, Kumar A (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet 17(1):1

    Article  CAS  Google Scholar 

  293. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40(8):1023–1028

    CAS  PubMed  Article  Google Scholar 

  294. Singh A, Khurana P (2016) Molecular and functional characterization of a wheat B2 protein imparting adverse temperature tolerance and influencing plant growth. Front Plant Sci 7:642

    PubMed  PubMed Central  Google Scholar 

  295. Singh VP, Siddiq EA, Swaminathan MS (1979) Mode of inheritance of dwarf stature and allelic relationships among various spontaneous and induced dwarfs of cultivated rice Oryza sativa L. Theor Appl Genet 55:169–176

    CAS  PubMed  Article  Google Scholar 

  296. Singh A, Pandey MP, Singh AK, Knox RE, Ammar K, Clarke JM, Clarke FR, Singh RP, Pozniak CJ, DePauw RM, McCallum BD (2013) Identification and mapping of leaf, stem and stripe rust resistance quantitative trait loci and their interactions in durum wheat. Mol Breed 31(2):405–418

    CAS  PubMed  Article  Google Scholar 

  297. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    CAS  PubMed  Article  Google Scholar 

  298. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    CAS  PubMed  Article  Google Scholar 

  299. Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112(2):208–221

    CAS  PubMed  Article  Google Scholar 

  300. Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crop Res 101:180–186

    Article  Google Scholar 

  301. Steele KA, Price AH, Witcombe JR, Shrestha R, Singh BN, Gibbons JM, Virk DS (2013) QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor Appl Genet 126:101–108

    CAS  PubMed  Article  Google Scholar 

  302. Steinhoff J, Liu W, Maurer HP, Würschum T, Friedrich C, Longin H, Ranc N, Reif JC (2011) Multiple-line cross QTL mapping in European elite maize. Crop Sci 51:2505–2516

    Article  Google Scholar 

  303. Stich B, Melchinger AE, Piepho HP, Heckenberger M, Maurer HP, Reif JC (2006) A new test for family-based association mapping with inbred lines from plant breeding programs. Theor Appl Genet 113:1121–1130

    PubMed  Article  Google Scholar 

  304. Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool 14:43–59

    Article  Google Scholar 

  305. Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251

    Article  Google Scholar 

  306. Sutton T, Baumann U, Hayes J, Collins NC, Shi BJ, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    CAS  PubMed  Article  Google Scholar 

  307. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    CAS  PubMed  Article  Google Scholar 

  308. Swamy BPM, Kumar A (2011) Sustainable rice yield in water short drought prone environments: conventional and molecular approaches. In: Lee TS (ed) Irrigation systems and practices in challenging environments. InTech, Croatia, pp 149–168

    Google Scholar 

  309. Tadege M, Wang TL, Wen J, Ratet P, Mysore KS (2009) Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiol 151:978–984

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  310. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes theαsubunit of protein kinase CK2. Proc Natl Acad Sci 98(14):7922–7927

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  311. Tan LB, Li XR, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364

    CAS  PubMed  Article  Google Scholar 

  312. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    CAS  PubMed  Article  Google Scholar 

  313. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92(2):191–203

    CAS  PubMed  Article  Google Scholar 

  314. Tanksley SD, Medina-Filho H, Rick CM (1982) Use of naturally occurring enzyme variation to detect and n1ap genes control ling quantitative traits in an interspecific backcross of tomato. Heredity 49:11–25

    Article  Google Scholar 

  315. Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z (2013) ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J 73:405–416

    CAS  PubMed  Article  Google Scholar 

  316. Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120:875–893

    CAS  PubMed  Article  Google Scholar 

  317. Terpstra IR, Snoek LB, Keurentjes JJ, Peeters AJ, Van den Ackerveken G (2010) Regulatory network identification by genetical genomics: signaling downstream of the Arabidopsis receptor-like kinase ERECTA. Plant Physiol 154(3):1067–1078

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  318. Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  319. Thompson O, Edgley M, Strasbourger P, Flibotte S, Ewing B, Adair R, Au V, Chaudhry I, Fernando L, Hutter H, Kieffer A, Lau J, Lee N, Miller A, Raymant G, Shen B, Shendure J, Taylor J, Turner EH, Hillier LW, Moerman DG, Waterston RH (2013) The million mutation project: a new approach to genetics in Caenorhabditis elegans. Genome Res 23:1749–1762

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  320. Thornsberry JM, Goodmann MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    CAS  PubMed  Article  Google Scholar 

  321. Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NVPR, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9(5):e96758

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  322. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    CAS  PubMed  Article  Google Scholar 

  323. Tierney MB, Lamour KH (2005) An introduction to reverse genetic tools for investigating gene function. Plant Health Instruct. doi:10.1094/PHI-A-2005-1025-01

    Google Scholar 

  324. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  325. Till BJ, Reynolds S, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo C, Enns L, Odden A (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  326. Till B, Cooper J, Tai T, Colowit P, Greene E, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  327. Tuberosa R (2016) Dissecting the QTLome governing root system architecture features in durum wheat. Plant and animal genome conference XXIV, San Diego

  328. Twyman RM, Kohli A (2003) Genetic modification: insertional and transposon mutagenesis. In: Thomas B, Murphy DJ, Murray B (eds) Encyclopedia of applied plant sciences. Elsevier Science, London, pp 369–377

    Chapter  Google Scholar 

  329. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45(9):1097–1102

    CAS  PubMed  Article  Google Scholar 

  330. Upadhyaya HD, Sharma S, Singh S, Singh M (2011) Inheritance of drought resistance related traits in two crosses of groundnut (Arachis hypogaea L.). Euphytica 177:55–66

    Article  Google Scholar 

  331. Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013) Fast-track introgression of “QTL hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome 6:1–9

    Google Scholar 

  332. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20(:):759–777

    CAS  PubMed  Article  Google Scholar 

  333. Vikram P, Swamy BM, Dixit S, Singh R, Singh BP, Miro B, Kohli A, Henry A, Singh NK, Kumar A (2015) Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Sci Rep 5:14799

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  334. Vikram P, Swamy BM, Dixit S, Trinidad J, Cruz MT, Maturan PC, Amante M, Kumar A (2016) Linkages and interactions analysis of major effect drought grain yield QTLs in rice. PloS One 11(3):e0151532

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  335. Vlaming P, Gerats H, Wiering H, Wijsman A, Cornu E, Farcy D, Maizonnier (1984) Petunia hybrida: a short description of the action of 91 genes, their origin and their map location. Plant Mol Biol Rep 2:21–42

    Article  Google Scholar 

  336. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Vande, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  337. Wagner A (2000) The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics 154:1389–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  338. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280(5366):1077–1082

    CAS  PubMed  Article  Google Scholar 

  339. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44(10):1098–1103

    CAS  PubMed  Article  Google Scholar 

  340. Wang Y, Han Y, Teng W, Zhao X, Li Y, Wu L, Li D, Li W (2014a) Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L. Merr.) seed. BMC Genomics 15(1):1

    Article  CAS  Google Scholar 

  341. Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, Zuccolo A, Song X, Kudrna D, Ammiraju JS, Cossu RM (2014b) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46(9):982–988

    CAS  PubMed  Article  Google Scholar 

  342. Wang J, Yu H, Weng X, Xie W, Xu C, Li X, Xiao J, Zhang Q (2014c) An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population. J Exp Bot 65(4):1069–1079

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  343. Wang Y, Ning Z, Hu Y, Chen J, Zhao R, Chen H, Ai N, Guo W, Zhang T (2015) Molecular mapping of restriction-site associated DNA markers in allotetraploid Upland cotton. PLoS One 10(4):e0124781

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  344. Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci 95:13959–13964

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  345. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171:737–738

    CAS  PubMed  Article  Google Scholar 

  346. Weber A, Clark RM, Vaughn L, de Jesus Sanchez-Gonzalez J, Yu J, Yandell BS, Bradbury P, Doebley J (2007) Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis). Genetics 177(4):2349–2359

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  347. Weber AL, Briggs WH, Rucker J, Baltazar BM, de Jesus Sanchez-Gonzalez J, Feng P, Buckler ES, Doebley J (2008) The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis) new evidence from association mapping. Genetics 180(2):1221–1232

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  348. Weeden NF (1985) Isozyme linkage in pea crop. In: Hebblethwaite P, Heath M, Dawkins T (eds) Pea crop: a basis for improvement. Butterworths Publishers, London

    Google Scholar 

  349. Wen W, Li K, Alseekh S, Omranian N, Zhao L, Zhou Y, Xiao Y, Jin M, Yang N, Liu H, Florian A (2015) Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population. Plant Cell 27(7):1839–1856

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  350. Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    CAS  PubMed  Article  Google Scholar 

  351. Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ (2007) Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet 3:1687–1701

    CAS  PubMed  Article  Google Scholar 

  352. Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D (2005) Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci USA 102:2460–2465

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  353. West MA, Van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, Clair DA, Michelmore RW (2006) High-density haplotyping with microarray based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  354. West MA, Kim K, Kliebenstein DJ, Van Leeuwen H, Michelmore RW, Doerge RW, Clair DA (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation inArabidopsis. Genetics 175(3):1441–1450

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  355. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  356. Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16(10):2719–2733

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  357. Witzel K, Pietsch C, Strickert M, Matros A, Röder MS, Weschke W, Wobus U, Mock HP (2011) Mapping of quantitative trait loci associated with protein expression variation in barley grains. Mol Breed 27(3):301–314

    CAS  Article  Google Scholar 

  358. Wurschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 25:201–210

    Article  Google Scholar 

  359. Xiao D, Wang H, Basnet RK, Zhao J, Lin K, Hou X, Bonnema G (2014) Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach. Plant physiol 164(3):1309–1325

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  360. Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  361. Xin Z, Wang M, Burow G, Burke J (2009) An induced Sorghum mutant population suitable for bioenergy research. Bio Energy Res 2:10–16

    Google Scholar 

  362. Xin Z, Gitz D, Burow G, Hayes C, Burke JJ (2015) Registration of two allelic erect leaf mutants of Sorghum. J Plant Regul 92:54–257

    CAS  Google Scholar 

  363. Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    CAS  PubMed  Article  Google Scholar 

  364. Xing Y, Tan Y, Hua JP, Sun X, Xu C, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105(2–3):248–257

    CAS  PubMed  Google Scholar 

  365. Xu S (1998) Mapping quantitative trait loci using multiple families of line crosses. Genetics 148:517–524

    CAS  PubMed  PubMed Central  Google Scholar 

  366. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48(2):391–407

    Article  Google Scholar 

  367. Xu FF, Tang FF, Shao YF, Chen YL, Chuan TO, Bao JS (2014) Genotype × environment interactions for agronomic traits of rice revealed by association mapping. Rice Sci 21(3):133–141

    Article  Google Scholar 

  368. Xu X, Lu L, Zhu B, Xu Q, Qi X, Chen X (2015) QTL mapping of cucumber fruit flesh thickness by SLAF-sEq. Sci Rep 5:15829

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  369. Xu Y, Li P, Yang Z, Xu C (2016) Genetic mapping of quantitative trait loci in crops. Crop J 06:003

    Google Scholar 

  370. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    CAS  PubMed  Article  Google Scholar 

  371. Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ and Zhang QF (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330

    CAS  PubMed  Article  Google Scholar 

  372. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12(12):2473–2483

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  373. Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  374. Yu H, Greenbaum D, Lu HX, Zhu X, Gerstein M (2004) Genomic analysis of essentiality within protein networks. Trends Genet 20:227–231

    CAS  PubMed  Article  Google Scholar 

  375. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    PubMed  PubMed Central  Article  Google Scholar 

  376. Yu X, Bai G, Liu S, Luo N, Wang Y, Richmond DS, Pijut PM, Jackson SA, Yu J, Jiang Y (2013) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64(6):1537–1551

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  377. Yu X, Pijut PM, Byrne S, Asp T, Bai G, Jiang Y (2015) Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. Plant Sci 235:37–45

    CAS  PubMed  Article  Google Scholar 

  378. Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  379. Zhang XJ, Wang JF, Huang J, Lan HX, Wang CL, Yin CF, Wu YY, Tang HJ, Qian Q, Li JY, Zhang HS (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109(52):21534–21539

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  380. Zhang P, Liu X, Tong H, Lu Y, Li J (2014) Association mapping for important agronomic traits in core collection of rice (Oryza sativa L.) with SSR markers. PLoS One 9(10):e111508

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  381. Zhang J, Mason AS, Wu J, Liu S, Zhang X, Luo T, Redden R, Batley J, Hu L, Yan G (2015a) Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Front Plant Sci. doi:10.3389/fpls.2015.01058

    Google Scholar 

  382. Zhang J, Zhao J, Xu Y, Liang J, Chang P, Yan F, Li M, Liang Y, Zou Z (2015b) Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor. Front Plant Sci. doi:10.3389/fpls.2015.01042

    Google Scholar 

  383. Zhang N, Gibon Y, Wallace JG, Lepak N, Li P, Dedow L, Chen C, So YS, Kremling K, Bradbury PJ et al (2015c) Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population. Plant Physiol 168:575–583

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  384. Zhang N, Zhang L, Tao Y, Guo L, Sun J, Li X, Zhao N, Peng J, Li X, Zeng L, Chen J (2015d) Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of a sex determining locus. BMC Genomics 16(1):1

    Article  CAS  Google Scholar 

  385. Zhang YD, Zheng J, Liang ZK, Liang YL, Peng ZH, Wang CL (2015e) Verification and evaluation of grain QTLs using RILs from TD70 × Kasalath in rice. Genet Mol Res 14(4):14882–14892

    CAS  PubMed  Article  Google Scholar 

  386. Zhang X, Wang C, Pang C, Wei H, Wang H, Song M et al (2016) Characterization and functional analysis of pebp family genes in upland cotton (Gossypium hirsutum L.). PLoS One 11(8):e0161080

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  387. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  388. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    CAS  PubMed  Article  Google Scholar 

  389. Zhou R, Tseng CL, Huan T, Li L (2014a) IsoMS: automated processing of LC–MS data generated by a chemical isotope labeling metabolomics platform. Anal Chem 86(10):4675–4679

    CAS  PubMed  Article  Google Scholar 

  390. Zhu KM, Tang D, Yan CJ, Chi ZC, Yu HX, Chen JM, Liang JS, Gu MH, Cheng ZK (2010) Erect panicle 2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics 184:343–350

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  391. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    CAS  PubMed  Article  Google Scholar 

  392. Zong G, Wang AH, Wang L, Liang GH, Gu MH, Sang T, Han B (2012) A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.). J Genet Genome 39:335–350

    CAS  Article  Google Scholar 

  393. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109:1193–1198

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  394. Zhou XL, Wang MN, Chen XM, Lu Y, Kang ZS, Jing JX (2014b) Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI178759. Theor Appl Genet 127:935–945

Download references

Acknowledgements

Authors thank Department of Biotechnology (DBT), Government of India, New Delhi; ICAR-Indian Institute of Pulses Research, Kanpur; Indian Council of Agricultural Research (ICAR) New Delhi; Department of Agricultural Cooperation and Farmers’ Welfare (DAC&FW), New Delhi for funding the research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jitendra Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Gupta, D.S., Gupta, S. et al. Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Rep 36, 1187–1213 (2017). https://doi.org/10.1007/s00299-017-2127-y

Download citation

Keywords

  • Quantitative traits
  • Genetic variation
  • Quantitative trait loci
  • Molecular markers
  • Bi-and multi parental mapping
  • GWAS
  • Candidate gene
  • QTL cloning
  • Crop QTLome
  • Marker assisted selection