Plant Cell Reports

, Volume 36, Issue 5, pp 689–703 | Cite as

The pivotal role of abscisic acid signaling during transition from seed maturation to germination

Review

Abstract

Seed maturation and germination are two continuous developmental processes that link two distinct generations in spermatophytes; the precise genetic control of these two processes is, therefore, crucially important for the survival of the next generation. Pieces of experimental evidence accumulated so far indicate that a concerted action of endogenous signals and environmental cues is required to govern these processes. Plant hormone abscisic acid (ABA) has been suggested to play a predominant role in directing seed maturation and maintaining seed dormancy under unfavorable environmental conditions until antagonized by gibberellins (GA) and certain environmental cues to allow the commencement of seed germination when environmental conditions are favorable; therefore, the balance of ABA and GA is a major determinant of the timing of seed germination. Due to the advent of new technologies and system biology approaches, molecular studies are beginning to draw a picture of the sophisticated genetic network that drives seed maturation during the past decade, though the picture is still incomplete and many details are missing. In this review, we summarize recent advances in ABA signaling pathway in the regulation of seed maturation as well as the transition from seed maturation to germination, and highlight the importance of system biology approaches in the study of seed maturation.

Keywords

Abscisic acid Seed maturation Seed dormancy Seed germination System biology 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, Nicolás C (2011) Functional analysis in Arabidopsis of FsPTP1, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation. Planta 234:589–597PubMedCrossRefGoogle Scholar
  2. Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15:211–218PubMedCrossRefGoogle Scholar
  3. Ariizumi T, Hauvermale AL, Nelson SK, Hanada A, Yamaguchi S, Steber CM (2013) Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. Plant Physiol 162:2125–2139PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barrero JM, Millar AA, Griffiths J, Czechowski T, Scheible WR, Udvardi M, Reid JB, Ross JJ, Jacobsen JV, Gubler F (2010) Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J 61:611–622PubMedCrossRefGoogle Scholar
  5. Baud S, Boutin J-P, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40:151–160CrossRefGoogle Scholar
  6. Bentsink L, Koornneef M (2008) Seed dormancy and germination. In: The Arabidopsis Book, vol 6. vol 1. BioOne, pp 1-18Google Scholar
  7. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich J, Renou J-P, Grini PE, Colot V, Schnittger A (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet 7:e1002014PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brocard-Gifford IM, Lynch TJ, Finkelstein RR (2003) Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 131:78–92PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bruijn SMd, Ooms JJJ, Karssen CM, Vreugdenhil D (1997) Effects of abscisic acid on reserve deposition in developing Arabidopsis seeds. Acta Bot Neerlandica 46:263–277CrossRefGoogle Scholar
  11. Cantoro R, Crocco CD, Benech-Arnold RL, Rodríguez MV (2013) In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy. J Exp Bot 64:5721–5735PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chandrasekaran U, Xu W, Liu A (2014) Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.). Cell Biosci 4:1–12CrossRefGoogle Scholar
  13. Chen H, Zhang J, Neff MM, Hong S-W, Zhang H, Deng X-W, Xiong L (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci 105:4495–4500PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chiang GCK, Barua D, Kramer EM, Amasino RM, Donohue K (2009) Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci 106:11661–11666PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239PubMedCrossRefGoogle Scholar
  16. De Bodt S, Hollunder J, Nelissen H, Meulemeester N, Inzé D (2012) CORNET 2.0: integrating plant coexpression, protein-protein interactions, regulatory interactions, gene associations and functional annotations. New Phytol 195:707–720PubMedCrossRefGoogle Scholar
  17. Di Mauro MF, Iglesias MJ, Arce DP, Valle EM, Arnold RB, Tsuda K, K-i Yamazaki, Casalongué CA, Godoy AV (2012) MBF1s regulate ABA-dependent germination of Arabidopsis seeds. Plant Signal Behav 7:188–192PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ (2014) WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J 79:810–823PubMedCrossRefGoogle Scholar
  19. Feng C-Z, Chen Y, Wang C, Kong Y-H, Wu W-H, Chen Y-F (2014) Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J 80:654–668PubMedCrossRefGoogle Scholar
  20. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523PubMedCrossRefGoogle Scholar
  21. Finkelstein RR (1994) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5:765–771CrossRefGoogle Scholar
  22. Finkelstein RR (2010) The role of hormones during seed development and germination. In: Plant hormones. Springer, pp 549–573Google Scholar
  23. Finkelstein R (2013) Abscisic acid synthesis and response. The Arabidopsis Book, p e0166Google Scholar
  24. Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609PubMedPubMedCentralCrossRefGoogle Scholar
  25. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45PubMedPubMedCentralGoogle Scholar
  26. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415PubMedCrossRefGoogle Scholar
  27. Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc Natl Acad Sci 108:20236–20241PubMedPubMedCentralCrossRefGoogle Scholar
  28. Frey A, Godin B, Bonnet M, Sotta B, Marion-Poll A (2004) Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218:958–964PubMedCrossRefGoogle Scholar
  29. Fuchs S, Tischer SV, Wunschel C, Christmann A, Grill E (2014) Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc Natl Acad Sci 111:5741–5746PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C (2007) Combined networks regulating seed maturation. Trends Plant Sci 12:294–300PubMedCrossRefGoogle Scholar
  31. Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Heß B, Macháčková I, Fischer U, Leubner-Metzger G (2007) 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot 58:3047–3060PubMedCrossRefGoogle Scholar
  32. Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54PubMedCrossRefGoogle Scholar
  33. Huang Y, Feng C-Z, Ye Q, Wu W-H, Chen Y-F (2016) Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genet 12:e1005833PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560PubMedCrossRefGoogle Scholar
  35. Jiang S, Kumar S, Eu Y-J, Jami SK, Stasolla C, Hill RD (2012) The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype. J Exp Bot 63:2693–2703PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kagaya Y, Okuda R, Ban A, Toyoshima R, Tsutsumida K, Usui H, Yamamoto A, Hattori T (2005a) Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis. Plant Cell Physiol 46:300–311PubMedCrossRefGoogle Scholar
  37. Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005b) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406PubMedCrossRefGoogle Scholar
  38. Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, Seo M (2010) Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol 51:1988–2001PubMedCrossRefGoogle Scholar
  39. Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158–165PubMedCrossRefGoogle Scholar
  40. Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S (2011) Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23:2568–2580PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kim H, Hwang H, Hong J-W, Lee Y-N, Ahn IP, Yoon IS, Yoo S-D, Lee S, Lee SC, Kim B-G (2012) A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63:1013–1024PubMedCrossRefGoogle Scholar
  43. Kim D, Y-h Cho, Ryu H, Kim Y, Kim T-H, Hwang I (2013a) BLH1 and KNAT3 modulate ABA responses during germination and early seedling development in Arabidopsis. Plant J 75:755–766PubMedCrossRefGoogle Scholar
  44. Kim W, Lee Y, Park J, Lee N, Choi G (2013b) HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant Cell Physiol 54:555–572PubMedCrossRefGoogle Scholar
  45. Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh. Theor Appl Genet 61:385–393PubMedGoogle Scholar
  46. Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plantarum 61:377–383CrossRefGoogle Scholar
  47. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee K, Seo PJ (2015) Coordination of seed dormancy and germination processes by MYB96. Plant Signal Behav 10:e1056423PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lee KH, Piao HL, Kim H-Y, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee I-J, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120PubMedCrossRefGoogle Scholar
  50. Lee KP, Piskurewicz U, Turečková V, Strnad M, Lopez-Molina L (2010) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci 107:19108–19113PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lee HG, Lee K, Seo PJ (2015a) The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. Plant Mol Biol 87:371–381PubMedCrossRefGoogle Scholar
  52. Lee K, Lee HG, Yoon S, Kim HU, Seo PJ (2015b) The Arabidopsis MYB96 transcription factor is a positive regulator of ABSCISIC ACID-INSENSITIVE4 in the control of seed germination. Plant Physiol 168:677–689PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J 45:309–319PubMedCrossRefGoogle Scholar
  54. Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661PubMedCrossRefGoogle Scholar
  55. Levi M, Brusa P, Chiatante D, Sparvoli E (1993) Cell cycle reactivation in cultured pea embryo axes. Effect of abscisic acid. In Vitro Cell Develop Biol Plant 29:47–50CrossRefGoogle Scholar
  56. Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N, Choi G (2013) ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25:4863–4878PubMedPubMedCentralCrossRefGoogle Scholar
  57. Linkies A, Müller K, Morris K, Turečková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822PubMedPubMedCentralCrossRefGoogle Scholar
  58. Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186:817–831PubMedCrossRefGoogle Scholar
  59. Liu Y, Bergervoet JHW, Vos CHR, Hilhorst HWM, Kraak HL, Karssen CM, Bino RJ (1994) Nuclear replication activities during imbibition of abscisic acid- and gibberellin-deficient tomato (Lycopersicon esculentum Mill.) seeds. Planta 194:368–373CrossRefGoogle Scholar
  60. Liu Y, Fang J, Xu F, Chu J, Yan C, Schläppi MR, Wang Y, Chu C (2014) Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars. J Genet Genom 41:327–338CrossRefGoogle Scholar
  61. Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328PubMedCrossRefGoogle Scholar
  62. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedGoogle Scholar
  63. Mansfield SG, Briarty LG (1992) Cotyledon cell development in Arabidopsis thaliana during reserve deposition. Can J Bot 70:151–164CrossRefGoogle Scholar
  64. Martínez-Andújar C, Ordiz MI, Huang Z, Nonogaki M, Beachy RN, Nonogaki H (2011) Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. Proc Natl Acad Sci 108:17225–17229PubMedPubMedCentralCrossRefGoogle Scholar
  65. Meurs C, Basra AS, Karssen CM, van Loon LC (1992) Role of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana. Plant Physiol 98:1484–1493PubMedPubMedCentralCrossRefGoogle Scholar
  66. Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci 106:5418–5423PubMedPubMedCentralCrossRefGoogle Scholar
  67. Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, Tanokura M (2013) Structure and function of abscisic acid receptors. Trends Plant Sci 18:259–266PubMedCrossRefGoogle Scholar
  68. Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hähnel U, Junker A, Weisshaar B, Conrad U, Bäumlein H, Altschmied L (2012) Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res 40:8240–8254PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709PubMedCrossRefGoogle Scholar
  70. Nakamura S, Toyama T (2001) Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. J Exp Bot 52:875–876PubMedCrossRefGoogle Scholar
  71. Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363PubMedCrossRefGoogle Scholar
  72. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185PubMedCrossRefGoogle Scholar
  73. Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, Kamiya Y, Naito S (2000) The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Dev Biol 220:412–423PubMedCrossRefGoogle Scholar
  74. Nasmyth K, Hunt T (1993) Cell cycle. Dams and sluices. Nature 366:634–635PubMedCrossRefGoogle Scholar
  75. Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007) ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50:935–949PubMedCrossRefGoogle Scholar
  76. Nonogaki M, Sall K, Nambara E, Nonogaki H (2014) Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds. Plant J 78:527–539PubMedCrossRefGoogle Scholar
  77. Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung W-I, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139PubMedCrossRefGoogle Scholar
  78. Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun T, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208PubMedPubMedCentralCrossRefGoogle Scholar
  79. Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G (2009) Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21:403–419PubMedPubMedCentralCrossRefGoogle Scholar
  80. Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-Hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107PubMedPubMedCentralCrossRefGoogle Scholar
  81. Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62:39–51PubMedCrossRefGoogle Scholar
  82. Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, T-fF Chow, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu J-K, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science 324:1068–1071PubMedPubMedCentralGoogle Scholar
  83. Park J, Lee N, Kim W, Lim S, Choi G (2011) ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23:1404–1415PubMedPubMedCentralCrossRefGoogle Scholar
  84. Penfield S, Josse E-M, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol 15:1998–2006PubMedCrossRefGoogle Scholar
  85. Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745PubMedPubMedCentralCrossRefGoogle Scholar
  86. Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol 50:1786–1800PubMedCrossRefGoogle Scholar
  87. Raz V, Bergervoet J, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252PubMedGoogle Scholar
  88. Robichaud CS, Wong J, Sussex IM (1979) Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Dev Genet 1:325–330CrossRefGoogle Scholar
  89. Roscoe TT, Guilleminot J, Bessoule J-J, Berger F, Devic M (2015) Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis. Plant Cell Physiol 56:1215–1228PubMedCrossRefGoogle Scholar
  90. Rueda-Romero P, Barrero-Sicilia C, Gómez-Cadenas A, Carbonero P, Oñate-Sánchez L (2012) Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14. J Exp Bot 63:1937–1949PubMedCrossRefGoogle Scholar
  91. Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620PubMedCrossRefGoogle Scholar
  92. Sasaki K, Kim M-H, Kanno Y, Seo M, Kamiya Y, Imai R (2015) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 influences ABA accumulation in seed and negatively regulates germination. Biochem Biophys Res Commun 456:380–384PubMedCrossRefGoogle Scholar
  93. Schramm EC, Nelson SK, Kidwell KK, Steber CM (2012a) Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’. Theor Appl Genet 126:791–803PubMedPubMedCentralCrossRefGoogle Scholar
  94. Schramm EC, Nelson SK, Steber CM (2012b) Wheat ABA-insensitive mutants result in reduced grain dormancy. Euphytica 188:35–49PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schwartz SH, Qin X, Zeevaart JA (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601PubMedPubMedCentralCrossRefGoogle Scholar
  96. Seo M, Nambara E, Choi G, Yamaguchi S (2009) Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69:463–472PubMedCrossRefGoogle Scholar
  97. Shang Y, Yan L, Liu Z-Q, Cao Z, Mei C, Xin Q, Wu F-Q, Wang X-F, Du S-Y, Jiang T, Zhang X-F, Zhao R, Sun H-L, Liu R, Yu Y-T, Zhang D-P (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935PubMedPubMedCentralCrossRefGoogle Scholar
  98. Shen Y, Devic M, Lepiniec L, Zhou D-X (2015) Chromodomain, Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes. Plant Biotechnol J 13:811–820PubMedCrossRefGoogle Scholar
  99. Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu C, Feng Y, Cao X, Xie Q (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet 9:1CrossRefGoogle Scholar
  100. Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, Li Y, Wang S, Tang S, Liu C, Yang W, Cao X, Serino G, Xie Q (2016) ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant J 85:348–361PubMedCrossRefGoogle Scholar
  101. S-j Lee, Lee MH, Kim J-I, Kim SY (2015) Arabidopsis putative MAP kinase kinase kinases Raf10 and Raf11 are positive regulators of seed dormancy and ABA response. Plant Cell Physiol 56:84–97CrossRefGoogle Scholar
  102. Söderman EM, Brocard IM, Lynch TJ, Finkelstein RR (2000) Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol 124:1752–1765PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217PubMedCrossRefGoogle Scholar
  104. Sun X, Shantharaj D, Kang X, Ni M (2010) Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol 13:611–620PubMedCrossRefGoogle Scholar
  105. Tan B-C, Joseph LM, Deng W-T, Liu L, Li Q-B, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56PubMedCrossRefGoogle Scholar
  106. Tang W, Ji Q, Huang Y, Jiang Z, Bao M, Wang H, Lin R (2013) FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol 163:857–866PubMedPubMedCentralCrossRefGoogle Scholar
  107. To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651PubMedPubMedCentralCrossRefGoogle Scholar
  108. Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environ 32:1211–1229PubMedCrossRefGoogle Scholar
  109. Vaistij FE, Gan Y, Penfield S, Gilday AD, Dave A, He Z, Josse E-M, Choi G, Halliday KJ, Graham IA (2013) Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proc Natl Acad Sci 110:10866–10871PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang H, Qi Q, Schorr P, Cutler Adrian J, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510PubMedCrossRefGoogle Scholar
  111. Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309PubMedCrossRefGoogle Scholar
  112. Weng J-K, Ye M, Li B, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881–893PubMedCrossRefGoogle Scholar
  113. West M, Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell 5:1361–1369PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wu J, Seng S, Sui J, Vonapartis E, Luo X, Gong B, Liu C, Wu C, Liu C, Zhang F, He J, Yi M (2015) Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy. Front Plant Sci 6:960PubMedPubMedCentralGoogle Scholar
  115. Wu T, Yang C, Ding B, Feng Z, Wang Q, He J, Tong J, Xiao L, Jiang L, Wan J (2016) Microarray-based gene expression analysis of strong seed dormancy in rice cv. N22 and less dormant mutant derivatives. Plant Physiol Biochem 99:27–38PubMedCrossRefGoogle Scholar
  116. Xiong L, Ishitani M, Lee H, Zhu J-K (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress—and osmotic stress-responsive gene expression. Plant Cell 13:2063–2084PubMedPubMedCentralCrossRefGoogle Scholar
  117. Xu Z-Y, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, Kim DH, Kim SY, Seo M, Bressan RA, Yun D-J, Hwang I (2012) A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell 24:2184–2199PubMedPubMedCentralCrossRefGoogle Scholar
  118. Xu D, Li J, Gangappa SN, Hettiarachchi C, Lin F, Andersson MX, Jiang Y, Deng XW, Holm M (2014) Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet 10:e1004197PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yang Y, Yu X, Song L, An C (2011) ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency. Plant Physiol 156:873–883PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zhao H, Zhang H, Cui P, Ding F, Wang G, Li R, Jenks MA, Lü S, Xiong L (2014) The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in Arabidopsis. Plant Physiol 165:1255–1268PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe WJJ, Li Y, Liu Y (2012) A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol 193:605–616PubMedCrossRefGoogle Scholar
  123. Zhou S-F, Sun L, Valdés AE, Engström P, Song Z-T, Lu S-J, Liu J-X (2015) Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis. New Phytol 208:188–197PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Natural Sciences and Science Education, National Institute of EducationNanyang Technological UniversitySingaporeSingapore

Personalised recommendations