Plant Cell Reports

, Volume 36, Issue 5, pp 637–652 | Cite as

Integration of omics approaches to understand oil/protein content during seed development in oilseed crops

  • Manju Gupta
  • Pudota B. Bhaskar
  • Shreedharan Sriram
  • Po-Hao Wang


Oilseed crops, especially soybean (Glycine max) and canola/rapeseed (Brassica napus), produce seeds that are rich in both proteins and oils and that are major sources of energy and nutrition worldwide. Most of the nutritional content in the seed is accumulated in the embryo during the seed filling stages of seed development. Understanding the metabolic pathways that are active during seed filling and how they are regulated are essential prerequisites to crop improvement. In this review, we summarize various omics studies of soybean and canola/rapeseed during seed filling, with emphasis on oil and protein traits, to gain a systems-level understanding of seed development. Currently, most (80–85%) of the soybean and rapeseed reference genomes have been sequenced (950 and 850 megabases, respectively). Parallel to these efforts, extensive omics datasets from different seed filling stages have become available. Transcriptome and proteome studies have detected preponderance of starch metabolism and glycolysis enzymes to be the possible cause of higher oil in B. napus compared to other crops. Small RNAome studies performed during the seed filling stages have revealed miRNA-mediated regulation of transcription factors, with the suggestion that this interaction could be responsible for transitioning the seeds from embryogenesis to maturation. In addition, progress made in dissecting the regulation of de novo fatty acid synthesis and protein storage pathways is described. Advances in high-throughput omics and comprehensive tissue-specific analyses make this an exciting time to attempt knowledge-driven investigation of complex regulatory pathways.


Seed development Seed composition Omics Systems biology Soybean Rapeseed/canola 



The authors would like to thank Rodrigo Sarria and Steve Rounsley for their support and advice, and Steve Rounsley and Cory Christensen for critical review of this manuscript.


  1. Agrawal GK, Thelen JJ (2006) Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics 5:2044–2059PubMedCrossRefGoogle Scholar
  2. Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aitken A (2002) Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant Mol Biol 50:993–1010PubMedCrossRefGoogle Scholar
  5. Allen RS, Li J, Stahle MI, Dubroué A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  7. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bai F, Settles AM (2015) Imprinting in plants as a mechanism to generate seed phenotypic diversity. Front Plant Sci. doi: 10.3389/fpls.2014.00780 Google Scholar
  9. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741PubMedPubMedCentralCrossRefGoogle Scholar
  10. Borisjuk L, Neuberger T, Schwender J et al (2013) Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell 25:1625–1640PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190PubMedCrossRefGoogle Scholar
  12. Brown R, Lemmon B, Nguyen H (2003) Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis thaliana. Protoplasma 222:167–174PubMedCrossRefGoogle Scholar
  13. Chalhoub B, Denoeud F, Liu S et al (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953PubMedCrossRefGoogle Scholar
  14. Chaudhary J, Patil GB, Sonah H, Deshmukh RK, Vuong TD, Valliyodan B, Nguyen HT (2015) Expanding omics resources for improvement of soybean seed composition traits. Front Plant Sci. doi: 10.3389/fpls.2015.01021 PubMedPubMedCentralGoogle Scholar
  15. Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:1–14CrossRefGoogle Scholar
  16. Chen B, Niu F, Liu W-Z et al (2016) Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death. DNA Res 23:101–114PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chrispeels MJ (1991) Sorting of proteins in the secretory system. Annu Rev Plant Biol 42:21–53CrossRefGoogle Scholar
  18. Clarke JD, Alexander DC, Ward DP, Ryals JA, Mitchell MW, Wulff JE, Guo L (2013) Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome. Sci Rep. doi: 10.1038/srep03082 Google Scholar
  19. Collakova E, Aghamirzaie D, Fang Y et al (2013) Metabolic and transcriptional reprogramming in developing soybean (Glycine max) embryos. Metabolites 3:347–372PubMedPubMedCentralCrossRefGoogle Scholar
  20. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74CrossRefGoogle Scholar
  21. Demartini DR, Jain R, Agrawal G, Thelen JJ (2011) Proteomic comparison of plastids from developing embryos and leaves of Brassica napus. J Proteome Res 10:2226–2237PubMedCrossRefGoogle Scholar
  22. Dong J, Keller WA, Yan W, Georges F (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Planta 218:483–491PubMedCrossRefGoogle Scholar
  23. Du H, Yang S-S, Liang Z, Feng B-R, Liu L, Huang Y-B, Tang Y-X (2012) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol. doi: 10.1186/1471-2229-12-106 PubMedPubMedCentralGoogle Scholar
  24. Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88PubMedCrossRefGoogle Scholar
  25. Fischer K, Weber A (2002) Transport of carbon in non-green plastids. Trends Plant Sci 7:345–351PubMedCrossRefGoogle Scholar
  26. Fu X, Fu N, Guo S et al (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genom. doi: 10.1186/1471-2164-10-161 Google Scholar
  27. Fulgosi H, Soll J, de Faria Maraschin S, Korthout HA, Wang M, Testerink C (2002) 14-3-3 proteins and plant development. Plant Mol Biol 50:1019–1029PubMedCrossRefGoogle Scholar
  28. Gajardo HA, Wittkop B, Soto-Cerda B et al (2015) Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol Breeding 35:1–19CrossRefGoogle Scholar
  29. Gallardo K, Thompson R, Burstin J (2008) Reserve accumulation in legume seeds. C R Biol 331:755–762PubMedCrossRefGoogle Scholar
  30. Gan L, C-y Zhang, X-d Wang et al (2013) Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content. J Proteome Res 12:4965–4978PubMedCrossRefGoogle Scholar
  31. Garg R, Jain M (2013) RNA-Seq for transcriptome analysis in non-model plants. Methods Mol Biol 1069:43–58PubMedCrossRefGoogle Scholar
  32. Godovac-Zimmermann J, Kleiner O, Brown LR, Drukier AK (2005) Perspectives in spicing up proteomics with splicing. Proteomics 5:699–709PubMedCrossRefGoogle Scholar
  33. Goettel W, Liu ZR, Xia J, Zhang WX, Zhao PX, An YQ (2014a) Systems and evolutionary characterization of microRNAs and their underlying regulatory networks in soybean cotyledons. PLoS One. doi: 10.1371/journal.pone.0086153 PubMedPubMedCentralGoogle Scholar
  34. Goettel W, Xia E, Upchurch R, Wang ML, Chen P, An YQ (2014b) Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genom. doi: 10.1186/1471-2164-15-299 Google Scholar
  35. Goldberg RB, De Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614PubMedCrossRefGoogle Scholar
  36. Gonzalez A, Mendenhall J, Huo Y, Lloyd A (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol 325:412–421PubMedCrossRefGoogle Scholar
  37. Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186PubMedCrossRefGoogle Scholar
  38. Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38:D843–D846PubMedCrossRefGoogle Scholar
  39. Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hajduch M, Casteel JE, Tang S, Hearne LB, Knapp S, Thelen JJ (2007) Proteomic analysis of near-isogenic sunflower varieties differing in seed oil traits. J Proteome Res 6:3232–3241PubMedCrossRefGoogle Scholar
  42. Han J, Lu C, Li Y, Deng Z, Fu B, Geng Z (2016) Discrimination of rapeseeds (Brassica napus L.) based on the content of erucic acid by 1H NMR. Eur Food Res Technol 242:441–447CrossRefGoogle Scholar
  43. Harada JJ, Barker SJ, Goldberg RB (1989) Soybean beta-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes. Plant Cell 1:415–425PubMedPubMedCentralGoogle Scholar
  44. Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hardtke CS, Ckurshumova W, Vidaurre DP et al (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100PubMedCrossRefGoogle Scholar
  46. Harrigan GG, Skogerson K, MacIsaac S, Bickel A, Perez T, Li X (2015) Application of 1H NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population. J Agric Food Chem 63:4690–4697PubMedCrossRefGoogle Scholar
  47. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531PubMedCrossRefGoogle Scholar
  48. Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hill JF, Breidenbach RW (1974) Proteins of soybean seeds II. Accumulation of the major protein components during seed development and maturation. Plant Physiol 53:747–751PubMedPubMedCentralCrossRefGoogle Scholar
  50. Höglund A-S, Rödin J, Larsson E, Rask L (1992) Distribution of napin and cruciferin in developing rape seed embryos. Plant Physiol 98:509–515PubMedPubMedCentralCrossRefGoogle Scholar
  51. Huang DQ, Koh C, Feurtado JA, Tsang EWT, Cutler AJ (2013) MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genom. doi: 10.1186/1471-2164-14-140 Google Scholar
  52. Huber SC, Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Opin Plant Biol 7:318–322PubMedCrossRefGoogle Scholar
  53. Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genom. doi: 10.1186/1471-2164-15-1 Google Scholar
  54. Islam F, Rengifo J, Redden R, Basford K, Beebe SE (2003) Association between seed coat polyphenolics (tannins) and disease resistance in common bean. Plant Foods Hum Nutr 58:285–297PubMedCrossRefGoogle Scholar
  55. Jin D, Wang Y, Zhao Y, Chen M (2013) MicroRNAs and their cross-talks in plant development. J Genet Genomics 40:161–170PubMedCrossRefGoogle Scholar
  56. Jofuku KD, Den Boer B, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jones SI, Vodkin LO (2013) Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS One. doi: 10.1371/journal.pone.0059270 Google Scholar
  58. Joshi T, Yao Q, Franklin LD et al (2010) SoyMetDB: the soybean metabolome database. In: Bioinformatics and biomedicine (BIBM), 2010. IEEE, pp 203–208Google Scholar
  59. Joshi T, Patil K, Fitzpatrick MR et al (2012) Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genom. doi: 10.1186/1471-2164-13-S1-S15 Google Scholar
  60. Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98:9448–9453PubMedPubMedCentralCrossRefGoogle Scholar
  61. Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6:4586–4598PubMedCrossRefGoogle Scholar
  62. Kersten B, Agrawal GK, Iwahashi H, Rakwal R (2006) Plant phosphoproteomics: a long road ahead. Proteomics 6:5517–5528PubMedCrossRefGoogle Scholar
  63. Kohler C, Lafon-Placette C (2015) Evolution and function of epigenetic processes in the endosperm. Front Plant Sci. doi: 10.3389/fpls.2015.00130 Google Scholar
  64. Korber N, Bus A, Li J, Parkin IA, Wittkop B, Snowdon RJ, Stich B (2016) Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus. Front Plant Sci. doi: 10.3389/fpls.2016.00386 PubMedPubMedCentralGoogle Scholar
  65. Korbes AP, Machado RD, Guzman F et al (2012) Identifying conserved and novel microRNAs in developing seeds of Brassica napus using deep sequencing. PLoS One. doi: 10.1371/journal.pone.0050663 Google Scholar
  66. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. doi: 10.1186/1746-4811-9-29 PubMedPubMedCentralGoogle Scholar
  67. Kortesniemi M, Vuorinen AL, Sinkkonen J, Yang B, Rajala A, Kallio H (2015) NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Food Chem 172:63–70PubMedCrossRefGoogle Scholar
  68. Lafon-Placette C, Köhler C (2014) Embryo and endosperm, partners in seed development. Curr Opin Plant Biol 17:64–69PubMedCrossRefGoogle Scholar
  69. Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059PubMedCrossRefGoogle Scholar
  70. Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144:562–574PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lei MG, Reeck GR (1987) Two-dimensional electrophoretic analysis of the proteins of isolated soybean protein bodies and of the glycosylation of soybean proteins. J Agric Food Chem 35:296–300CrossRefGoogle Scholar
  72. Li L, Hur M, Lee JY et al (2015) A systems biology approach toward understanding seed composition in soybean. BMC Genom. doi: 10.1186/1471-2164-16-S3-S9 Google Scholar
  73. Li D, Liu Z, Gao L et al (2016) Genome-wide identification and characterization of microRNAs in developing grains of Zea mays L. PLoS One. doi: 10.1371/journal.pone.0153168 Google Scholar
  74. Libault M, Farmer A, Joshi T et al (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63:86–99PubMedGoogle Scholar
  75. Lin L, Allemekinders H, Dansby A, Campbell L, Durance-Tod S, Berger A, Jones PJ (2013) Evidence of health benefits of canola oil. Nutr Rev 71:370–385PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lin H, Rao J, Shi J et al (2014) Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. J Integr Plant Bio 56:826–836CrossRefGoogle Scholar
  77. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146PubMedCrossRefGoogle Scholar
  79. Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D (2010) The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J 62:416–428PubMedCrossRefGoogle Scholar
  80. Liu S, Liu Y, Yang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. doi: 10.1038/ncomms4930 Google Scholar
  81. Lorenz C, Rolletschek H, Sunderhaus S, Braun H-P (2014) Brassica napus seed endosperm—metabolism and signaling in a dead end tissue. J Proteomics 108:382–426PubMedCrossRefGoogle Scholar
  82. M-a Ohto, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102:3123–3128PubMedPubMedCentralCrossRefGoogle Scholar
  83. M-a Ohto, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289CrossRefGoogle Scholar
  84. Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046PubMedCrossRefGoogle Scholar
  85. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375PubMedPubMedCentralCrossRefGoogle Scholar
  86. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517PubMedPubMedCentralCrossRefGoogle Scholar
  87. Meinke D, Chen J, Beachy R (1981) Expression of storage-protein genes during soybean seed development. Planta 153:130–139PubMedCrossRefGoogle Scholar
  88. Meyer LJ, Gao J, Xu D, Thelen JJ (2012) Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. Plant Physiol 159:517–528PubMedPubMedCentralCrossRefGoogle Scholar
  89. Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81PubMedCrossRefGoogle Scholar
  90. Miller SS, Bowman L-AA, Gijzen M, Miki BL (1999) Early development of the seed coat of soybean (Glycine max). Ann Bot 84:297–304CrossRefGoogle Scholar
  91. Moïse JA, Han S, Gudynaitę-Savitch L, Johnson DA, Miki BLA (2005) Seed coats: structure, development, composition, and biotechnology. In Vitro Cell Dev Biol-Pl 41:620–644CrossRefGoogle Scholar
  92. Morrell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13:85–96PubMedGoogle Scholar
  93. Mukherji M (2005) Phosphoproteomics in analyzing signaling pathways. Expert Rev Proteomics 2:117–128PubMedCrossRefGoogle Scholar
  94. Nakabayashi R, Saito K (2013) Metabolomics for unknown plant metabolites. Anal Bioanal Chem 405:5005–5011PubMedCrossRefGoogle Scholar
  95. Narvel JM, Fehr WR, Welke GA (1998) Agronomic and seed traits of soybean lines lacking seed lipoxygenases. Crop Sci 38:926–928CrossRefGoogle Scholar
  96. Nielsen NC, Dickinson CD, Cho T-J et al (1989) Characterization of the glycinin gene family in soybean. Plant Cell 1:313–328PubMedPubMedCentralCrossRefGoogle Scholar
  97. Niu Y, Wu GZ, Ye R et al (2009) Global analysis of gene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana. Mol Plant 2:1107–1122PubMedCrossRefGoogle Scholar
  98. Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Gene Dev 24:2678–2692PubMedPubMedCentralCrossRefGoogle Scholar
  99. Norton G, Harris JF (1975) Compositional changes in developing rape seed (Brassica napus L.). Planta 123:163–174PubMedCrossRefGoogle Scholar
  100. Ohlrogge JB, Kuo T-M (1984) Control of lipid synthesis during soybean seed development: enzymic and immunochemical assay of acyl carrier protein. Plant Physiol 74:622–625PubMedPubMedCentralCrossRefGoogle Scholar
  101. Oikawa A, Nakamura Y, Ogura T et al (2006) Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiol 142:398–413PubMedPubMedCentralCrossRefGoogle Scholar
  102. Oikawa A, Matsuda F, Kusano M, Okazaki Y, Saito K (2008) Rice metabolomics. Rice 1:63–71CrossRefGoogle Scholar
  103. Okushima Y, Overvoorde PJ, Arima K et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463PubMedPubMedCentralCrossRefGoogle Scholar
  104. O’Rourke JA, Bolon YT, Bucciarelli B, Vance CP (2014) Legume genomics: understanding biology through DNA and RNA sequencing. Ann Bot 113:1107–1120PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30:286–290PubMedCrossRefGoogle Scholar
  106. Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791PubMedPubMedCentralCrossRefGoogle Scholar
  107. Peng FY, Weselake RJ (2011) Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genom. doi: 10.1186/1471-2164-12-286 Google Scholar
  108. Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Pl 51:1–8CrossRefGoogle Scholar
  109. Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21PubMedPubMedCentralCrossRefGoogle Scholar
  110. Radchuk V, Borisjuk L (2014) Physical, metabolic and developmental functions of the seed coat. Front Plant Sci. doi: 10.3389/fpls.2014.00510 PubMedPubMedCentralGoogle Scholar
  111. Ripp KG, Viitanen PV, Hitz WD, Franceschi VR (1988) Identification of membrane protein associated with sucrose transport into cells of developing soybean cotyledons. Plant Physiol 88:1435–1445PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rubel A, Rinne R, Canvin D (1972) Protein, oil, and fatty acid in developing soybean seeds. Crop Sci 12:739–741CrossRefGoogle Scholar
  113. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183PubMedCrossRefGoogle Scholar
  114. Schultz DJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis. In: Lipid biotechnology. CRC Press, pp 1–25Google Scholar
  115. Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782PubMedCrossRefGoogle Scholar
  116. Severin AJ, Woody JL, Bolon YT et al (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol. doi: 10.1186/1471-2229-10-160 PubMedPubMedCentralGoogle Scholar
  117. Shamimuzzaman M, Vodkin L (2012) Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genom. doi: 10.1186/1471-2164-13-310 Google Scholar
  118. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids 1. Annu Rev Plant Biol 49:611–641CrossRefGoogle Scholar
  119. Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553PubMedCrossRefGoogle Scholar
  120. Smith CW, Patton JG, Nadal-Ginard B (1989) Alternative splicing in the control of gene expression. Annu Rev Genet 23:527–577PubMedCrossRefGoogle Scholar
  121. Song Q-X, Liu Y-F, Hu X-Y, Zhang W-K, Ma B, Chen S-Y, Zhang J-S (2011) Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol. doi: 10.1186/1471-2229-11-5 Google Scholar
  122. Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217PubMedCrossRefGoogle Scholar
  123. Swatek KN, Graham K, Agrawal GK, Thelen JJ (2011) The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing Arabidopsis seed. J Proteome Res 10:4076–4087PubMedCrossRefGoogle Scholar
  124. Tan H, Xie Q, Xiang X et al (2015) Dynamic metabolic profiles and tissue-specific source effects on the metabolome of developing seeds of Brassica napus. PLoS One. doi: 10.1371/journal.pone.0124794 Google Scholar
  125. Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21PubMedCrossRefGoogle Scholar
  126. Thompson R, Burstin J, Gallardo K (2009) Post-genomics studies of developmental processes in legume seeds. Plant Physiol 151:1023–1029PubMedPubMedCentralCrossRefGoogle Scholar
  127. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853PubMedPubMedCentralCrossRefGoogle Scholar
  128. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515PubMedPubMedCentralCrossRefGoogle Scholar
  129. Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Biol 52:335–361CrossRefGoogle Scholar
  130. Wang J-W, Wang L-J, Mao Y-B, Cai W-J, Xue H-W, Chen X-Y (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039PubMedCrossRefGoogle Scholar
  132. Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279PubMedCrossRefGoogle Scholar
  133. Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270PubMedCrossRefGoogle Scholar
  134. Wu G, Zhang L, Yin Y, Wu J, Yu L, Zhou Y, Li M (2015) Sequencing, de novo assembly and comparative analysis of Raphanus sativus transcriptome. Front Plant Sci. doi: 10.3389/fpls.2015.00198 Google Scholar
  135. Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X (2011) RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol 77:299–308PubMedCrossRefGoogle Scholar
  136. Xu HM, Kong XD, Chen F, Huang JX, Lou XY, Zhao JY (2015) Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. BMC Genom. doi: 10.1186/s12864-015-2062-7 Google Scholar
  137. Ye CY, Xu H, Shen E et al (2014) Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean. Front Plant Sci. doi: 10.3389/fpls.2014.00743 Google Scholar
  138. Yu J, Zhang Z, Wei J, Ling Y, Xu W, Su Z (2014) SFGD: a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways. BMC Genom. doi: 10.1186/1471-2164-15-271 Google Scholar
  139. Zabala G, Campos E, Varala KK et al (2012) Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max. BMC Plant Biol. doi: 10.1186/1471-2229-12-177 PubMedPubMedCentralGoogle Scholar
  140. Zhang Y, Liang W, Shi J, Xu J, Zhang D (2013) MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. J Integr Plant Bio 55:1166–1178CrossRefGoogle Scholar
  141. Zhang H, Zhang J, Wei P et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol 12:797–807CrossRefGoogle Scholar
  142. Zhang XQ, Sun J, Cao XF, Song XW (2015) Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol 169:2118–2128PubMedPubMedCentralGoogle Scholar
  143. Zhou Z, Jiang Y, Wang Z et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dow AgroSciencesIndianapolisUSA

Personalised recommendations