Plant Cell Reports

, Volume 36, Issue 5, pp 669–688 | Cite as

Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: implications on seed technology traits

  • Anca Macovei
  • Andrea Pagano
  • Paola Leonetti
  • Daniela Carbonera
  • Alma Balestrazzi
  • Susana S. Araújo


The pre-germinative metabolism is among the most fascinating aspects of seed biology. The early seed germination phase, or pre-germination, is characterized by rapid water uptake (imbibition), which directs a series of dynamic biochemical events. Among those are enzyme activation, DNA damage and repair, and use of reserve storage compounds, such as lipids, carbohydrates and proteins. Industrial seedling production and intensive agricultural production systems require seed stocks with high rate of synchronized germination and low dormancy. Consequently, seed dormancy, a quantitative trait related to the activation of the pre-germinative metabolism, is probably the most studied seed trait in model species and crops. Single omics, systems biology, QTLs and GWAS mapping approaches have unveiled a list of molecules and regulatory mechanisms acting at transcriptional, post-transcriptional and post-translational levels. Most of the identified candidate genes encode for regulatory proteins targeting ROS, phytohormone and primary metabolisms, corroborating the data obtained from simple molecular biology approaches. Emerging evidences show that epigenetic regulation plays a crucial role in the regulation of these mentioned processes, constituting a still unexploited strategy to modulate seed traits. The present review will provide an up-date of the current knowledge on seed pre-germinative metabolism, gathering the most relevant results from physiological, genetics, and omics studies conducted in model and crop plants. The effects exerted by the biotic and abiotic stresses and priming are also addressed. The possible implications derived from the modulation of pre-germinative metabolism will be discussed from the point of view of seed quality and technology.


Dormancy Epigenetics GWAS Pre-germinative metabolism Seed quality Systems biology 



The financial support from University of Pavia (Italy) and Fundação para a Ciência e a Tecnologia (Lisbon, Portugal) is acknowledged through the research unit “GREEN-it: Bioresources for Sustainability” (UID/Multi/04551/2013), as well as S.S.A. post-doctoral grant (SFRH/BPD/108032/2015). A.P. has been awarded with a PhD fellowship granted by the IUSS-Institute for Advanced Study of Pavia. This work has been partially supported by Reg.CE n. 1698/2005 Programma di Sviluppo rurale per la Puglia 2007/2013 (Misura 214—Azione 4 Sub azione a) “SaVeGraINPuglia—Progetti integrati per la Biodiversità-Recupero, caratterizzazione, salvaguardia e valorizzazione di leguminose, cereali da granella e foraggio in Puglia”.Network sponsorship from COST Action FA1306 Plant Phenotyping “The quest for tolerant varieties—phenotyping at the plant and cellular level” is acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akman Z (2009) Comparison of high temperature tolerance in maize, rice and sorghum seeds by plant growth regulators. J Anim Vet Adv 8:358–361Google Scholar
  2. Anup CP, Melvin P, Shilpa N, Gandhi MN, Jadhav M, Ali H, Kini KR (2015) Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens. J Proteomics 120:58–74. doi: 10.1016/j.jprot.2015.02.013 PubMedCrossRefGoogle Scholar
  3. Araújo SS, Beebe S, Crespi M et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280. doi: 10.1080/07352689.2014.898450 CrossRefGoogle Scholar
  4. Araújo SS, Paparella S, Dondi D et al (2016) Physical methods for seed invigoration: advantages and challenges in seed technology. Front Plant Sci 7:646. doi: 10.3389/fpls.2016.00646 PubMedCentralCrossRefGoogle Scholar
  5. Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942. doi: 10.1038/nature06069 PubMedCrossRefGoogle Scholar
  6. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. CR Biol 331:806–814. doi: 10.1016/j.crvi.2008.07.022 CrossRefGoogle Scholar
  7. Balestrazzi A, Confalonieri M, Macovei A, Donà M, Carbonera D (2011a) Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Rep 30:287–295. doi: 10.1007/s00299-010-0975-9 PubMedCrossRefGoogle Scholar
  8. Balestrazzi A, Confalonieri M, Macovei A, Carbonera D (2011b) Seed imbibition in Medicago truncatula Gaertn.: expression profiles of DNA repair genes in relation to PEG-mediated stress. J Plant Physiol 168:706–713. doi: 10.1016/j.jplph.2010.10.008 PubMedCrossRefGoogle Scholar
  9. Balestrazzi A, Donà M, Macovei A, Sabatini ME, Pagano A, Carbonera D (2015) DNA repair and telomere maintenance during seed imbibition: correlation of transcriptional patterns. Telomere Telomerase 2:e496. doi: 10.14800/tt.496 Google Scholar
  10. Barba-Espin G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernandez JA (2011) Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ 34:1907–1919. doi: 10.1111/j.1365-3040.2011.02386.x PubMedCrossRefGoogle Scholar
  11. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi: 10.1016/S0092-8674(04)00045-5 PubMedCrossRefGoogle Scholar
  12. Basbouss-Serhal I, Soubigou-Taconnat L, Bailly C, Leymarie J (2015) Germination potential of dormant and nondormant arabidopsis seeds is driven by distinct recruitment of messenger RNAs to polysomes. Plant Physiol 168:1049–1065. doi: 10.1104/pp.15.00510 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bassel GW, Lan H, Glaab E et al (2011) Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc Natl Acad Sci USA 108:9709–9714. doi: 10.1073/pnas.1100958108 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Benatti MR, Yookongkaew N, Meetam M, Guo WJ, Punyasuk N, AbuQamar S, Goldsbrough P (2014) Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New Phytol 202:940–951. doi: 10.1111/nph.12718 CrossRefGoogle Scholar
  15. Bennetzen JL, Zhu J-K (2011) Epigenetics of the epigenome. Curr Opin Plant Biol 14:113–115. doi: 10.1016/j.pbi.2011.03.015 PubMedCrossRefGoogle Scholar
  16. Bentsink L, Koornneef M (2008) Seed dormancy and germination. Arabidopsis Book 6:e0119. doi: 10.1199/tab.0119 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066. doi: 10.1105/tpc.9.7.1055 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy. Springer, New York. doi: 10.1007/978-1-4614-4693-4
  19. Bhattacharjee S (2013) Heat and chilling induced disruption of redox homeostasis and its regulation by hydrogen peroxide in germinating rice seeds (Oryza sativa L., Cultivar Ratna). Physiol Mol Biol Plant 19:199–207. doi: 10.1007/s12298-012-0159-x CrossRefGoogle Scholar
  20. Bhushan B, Pal A, Kumar S, Rajesh Singh A (2015) Evaluation of post-germinative lipid peroxidation and enzymatic antioxidant potential in lead absorbing oat (Avena sativa) seedlings. J Environ Biol 36:279–288PubMedGoogle Scholar
  21. Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing J-A, Fan T, Knox R (2011) Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 11:865–882. doi: 10.1002/pmic.200900810 PubMedCrossRefGoogle Scholar
  22. Catusse J, Job C, Job D (2008) Transcriptome- and proteome-wide analyses of seed germination. C R Biol 331:815–822. doi: 10.1016/j.crvi.2008.07.023 PubMedCrossRefGoogle Scholar
  23. Chavan JK, Kadam SS, Beuchat LR (1989) Nutritional improvement of cereals by sprouting. Crit Rev Food Sci Nutr 28:401–437. doi: 10.1080/10408398909527508 PubMedCrossRefGoogle Scholar
  24. Chen H, Chu P, Zhou Y, Li Y, Liu J, Ding Y, Tsang EWT, Jiang L, Wu K, Huang S (2012) Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. J Exp Bot 63:4107–4121. doi: 10.1093/jxp/ers093 PubMedCrossRefGoogle Scholar
  25. Cheng J, Wang L, Zeng P, He Y, Zhou R, Zhang H, Wang Z (2016) Identification of genes involved in rice seed priming in the early imbibition stage. Plant Biol (Stuttg.). doi: 10.1111/plb.12438 Google Scholar
  26. Choudhary M, Jayanand Padaria JC (2015) Transcriptional profiling in pearl millet (Pennisetum glaucum L.R. Br.) for identification of differentially expressed drought responsive genes. Physiol Mol Biol Plant 21:187–196. doi: 10.1007/s12298-015-0287-1 CrossRefGoogle Scholar
  27. Chung PJ, Park BS, Wang H et al (2016) Light-inducible MiR163 targets PXMT1 transcripts to promote seed germination and primary root elongation in Arabidopsis. Plant Physiol 170:1772–1782. doi: 10.1104/pp.15.01188 PubMedPubMedCentralGoogle Scholar
  28. Colville A, Alhattab R, Hu M et al (2011) Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. Plant Cell Rep 30:1969–1979. doi: 10.1007/s00299-011-1105-z PubMedCrossRefGoogle Scholar
  29. Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H (2014) Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5:539. doi: 10.3389/fpls.2014.00539 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Daszkowska-Golec A (2011) Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. OMICS 15:763–774. doi: 10.1089/omi.2011.0082 PubMedCrossRefGoogle Scholar
  31. Dekkers BJW, Schuurmans JAMJ, Smeekens SCM (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218:579–588. doi: 10.007/s00425-003-1154-9 PubMedCrossRefGoogle Scholar
  32. Diaz-Vivancos P, Barba-Espin G, Hernandez JA (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32:1491–1502. doi: 10.1007/s00299-013-1473-7 PubMedCrossRefGoogle Scholar
  33. Donà M, Balestrazzi A, Mondoni A, Rossi G, Ventura L, Buttafava A, Macovei A, Sabatini ME, Valassi A, Carbonera D (2013) DNA profiling, telomere analysis and antioxidant properties as tools for monitoring ex situ seed longevity. Ann Bot 111:987–998. doi: 10.1093/aob/mct058 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dutra SM, Von Pinho EV, Santos HO, Lima AC, Von Pinho RG, Carvalho ML (2015) Genes related to high temperature tolerance during maize seed germination. Genet Mol Res 14:18047–18058. doi: 10.4238/2015.December.22.31 PubMedCrossRefGoogle Scholar
  35. El-Adawy TA, Rahma EH, El-Bedawey AA, El-Beltagy AE (2003) Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods Hum Nutr 58:1–13. doi: 10.1023/B:QUAL.0000040339.48521.75 CrossRefGoogle Scholar
  36. El-Maarouf-Bouteau H, Meimoun P, Job C, Job D, Bailly C (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Front Plant Sci 4:77. doi: 10.3389/fpls.2013.00077 PubMedPubMedCentralCrossRefGoogle Scholar
  37. El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374. doi: 10.1111/pce.12371 PubMedCrossRefGoogle Scholar
  38. Essemine J, Ammar S, Bouzid S (2010) Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence. J Biol Sci 10:565–572. doi: 10.39923/jbs.2010.565.572 CrossRefGoogle Scholar
  39. Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Laganà A (2014) Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteomics 108:238–257. doi: 10.1016/j.jprot.2014.04.040 PubMedCrossRefGoogle Scholar
  40. Finch-Savage WE, Bassel GW (2016) Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot 67:567–591. doi: 10.1093/jxb/erv490 PubMedCrossRefGoogle Scholar
  41. Finch-Savage WE, Cadman CSC, Toorop PE et al (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78. doi: 10.1111/j.1365-313X.2007.03118.x PubMedCrossRefGoogle Scholar
  42. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415. doi: 10.1146/annurev.arplant.59.032607.092740 PubMedCrossRefGoogle Scholar
  43. Galhaut L, de Lespinay A, Walker DJ, Bernal MP, Correal E, Lutts S (2014) Seed priming of Trifolium repens L improved germination and early seedling growth on heavy metal-contaminated soil. Water Air Soil Pollut 225:1905. doi: 10.1007/s11270-014-1905-1 CrossRefGoogle Scholar
  44. Ghoshal N, Talapatra S, Talukder P, Sengupta M, Ray SK, Chakraborty A, Raychaudhuri SS (2015) Cross-adaptation to cadmium stress in Plantago ovata by pre-exposure to low dose of gamma rays: effects on metallothionein and metal content. Int J Radiat Biol 91:611–623. doi: 10.3109/09553002.2015.1047984 PubMedCrossRefGoogle Scholar
  45. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi: 10.1016/j.plaphy.2010.08.016 PubMedCrossRefGoogle Scholar
  46. Global Seed Market (2016–2020) Mordor Intelligence, IndiaGoogle Scholar
  47. Global Seed Market Report: 2016 edition. Koncept analytics.
  48. Golldack D, Li C, Mohan H, Probst N (2013) Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Rep 32:1007–1016. doi: 10.1007/s00299-013-1409-2 PubMedCrossRefGoogle Scholar
  49. Gu X-Y, Turnipseed EB, Foley ME (2008) The qSD12 locus controls offspring tissue-imposed seed dormancy in rice. Genetics 179:2263–2273. doi: 10.1534/genetics.108.092007 PubMedPubMedCentralGoogle Scholar
  50. Hasanuzzaman M, Hossain MA, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375CrossRefGoogle Scholar
  51. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684. doi: 10.3390/ijms14059643 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hatzig SV, Frisch M, Breuer F et al (2015) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci 6:221. doi: 10.3389/fpls.2015.00221 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hay FR, Probert RJ (2013) Advances in seed conservation of wild plant species: a review of recent research. Conserv Physiol 1:cot030. doi: 10.1093/conphys/cot030 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hayashi K (2012) The interaction and integration of auxin signaling components. Plant Cell Physiol 53:965–975. doi: 10.1093/pcp/pcs035 PubMedCrossRefGoogle Scholar
  55. He D, Wang Q, Wang K, Yang P (2015) Genome-wide dissection of the MicroRNA expression profile in rice embryo during early stages of seed germination. PLoS One 10:e0145424. doi: 10.1371/journal.pone.0145424 PubMedPubMedCentralCrossRefGoogle Scholar
  56. He H, Willems LAJ, Batushansky A et al (2016) Effects of parental temperature and nitrate on seed performance are reflected by partly overlapping genetic and metabolic pathways. Plant Cell Physiol 57:473–487. doi: 10.1093/pcp/pcv207 PubMedCrossRefGoogle Scholar
  57. Holdsworth MJ, Bentsink L, Soppe WJJ (2008a) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54. doi: 10.1111/j.1469-8137.2008.02437.x PubMedCrossRefGoogle Scholar
  58. Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008b) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13. doi: 10.1016/j.tplants.2007.11.002 PubMedCrossRefGoogle Scholar
  59. Holman TJ, Jones PD, Russell L et al (2009) The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proc Natl Acad Sci USA 106:4549–4554. doi: 10.1073/pnas.0810280106 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hori K, Sato K, Takeda K (2007) Detection of seed dormancy QTL in multiple mapping populations derived from crosses involving novel barley germplasm. Theor Appl Genet 115:869–876. doi: 10.1007/s00122-007-0620-3 PubMedCrossRefGoogle Scholar
  61. Howell KA, Narsai R, Carroll A et al (2009) Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol 149:961–980. doi: 10.1104/pp.108.129874 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huo H, Henry IM, Coppoolse ER et al (2016a) Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing. Plant J. doi: 10.1111/tpj.13267 Google Scholar
  63. Huo H, Wei S, Bradford KJ (2016b) DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proc Natl Acad Sci USA 113:E2199–E2206. doi: 10.1073/pnas.1600558113 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46. doi: 10.1016/j.jplph.2015.12.011 PubMedCrossRefGoogle Scholar
  65. Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178:1725–1736. doi: 10.1534/genetics.107.084939 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng SH, Yuasa T, Iwaya-Inoue M (2012) Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiol 158:1705–1714. doi: 10.1104/pp.111.192740 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ishibashi Y, Koda Y, Zheng SH, Yuasa T, Iwaya-Inoue M (2013) Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann Bot 111:95–102. doi: 10.1093/aob/mcs240 PubMedCrossRefGoogle Scholar
  68. Jain M, Prasad PVV, Boote KJ, Hartwell AL, Chourey PS (2007) Effects of season-long high temperature growth conditions on sugar-to-starch metabolis in developing microspores of grain sorghum (Sorghum bicolor L. Moench.). Planta 227:67–79. doi: 10.1007/s00425-0595-y PubMedCrossRefGoogle Scholar
  69. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. doi: 10.1146/annurev.arplant.57.032905.105218 PubMedCrossRefGoogle Scholar
  70. Kalischuk ML, Johnson D, Kawchuk LM (2015) Priming with a double-stranded DNA virus alters Brassica rapa seed architecture and facilitates a defense response. Gene 557:130–137. doi: 10.1016/j.gene.2014.12.016 PubMedCrossRefGoogle Scholar
  71. Kapazoglou A, Drosou V, Argiriou A et al (2013) The study of a barley epigenetic regulator, HvDME, in seed development and under drought. BMC Plant Biol 13:172. doi: 10.1186/1471-2229-13-172 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kaushal N, Bhandari K, Siddique KHM, Nayyar H (2016) Food crops face rising temperatures: an overview of responses, adaptative mechanisms, and approaches to improve heat tolerance. Conget Food Agric 2:1134380. doi: 10.1080/23311932.2015.1134380 Google Scholar
  73. Kim JH, Hyun WY, Nguyen HN, Jeong CY, Xiong L, Hong SW, Lee H (2015) AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5. Plant Cell Environ 38:559–571. doi: 10.1111/pce.12415 PubMedCrossRefGoogle Scholar
  74. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29. doi: 10.1186/1746-4811-9-29 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105CrossRefGoogle Scholar
  76. Kranner I, Kastberger G, Hartbauer M, Pritchard HW (2010a) Noninvasive diagnosis of seed viability using infrared thermography. Proc Natl Acad Sci USA 107:3912–3917. doi: 10.1073/pnas.0914197107 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010b) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673. doi: 10.1111/j.1469-8137.2010.03461.x PubMedCrossRefGoogle Scholar
  78. Kretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismail AM, Mackill DJ, Septiningsih EM (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants. doi: 10.1038/nplants.2015.124 PubMedGoogle Scholar
  79. Kubala S, Garnczarska M, Wojtyla L, Clippe A, Kosmala A, Zmienko A, Lutts S, Quinet M (2015) Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113. doi: 10.1016/j.plantsci.2014.11.008 PubMedCrossRefGoogle Scholar
  80. Kumar S, Gupta D, Nayyar H (2012) Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiol Plant 34:75–86. doi: 10.1007/s11738-011-0806-9 CrossRefGoogle Scholar
  81. Kumar JSP, Prasad RS, Banerjee R, Thammineni C (2015) Seed birth to death: dual actions of reactive oxygen species in seed physiology. Ann Bot 116:663–668. doi: 10.1093/aob/mcv098 CrossRefGoogle Scholar
  82. Lafta A, Mou B (2013) Evaluation of lettuce genotypes for seed thermotolerance. HortScience 48:708–714Google Scholar
  83. Lariguet P, Ranocha P, De Meyer M, Barbier O, Penel C, Dunand C (2013) Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta 238:381–395. doi: 10.1007/s00425-013-1901-5 PubMedCrossRefGoogle Scholar
  84. Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60. doi: 10.1111/j.1365-3040.2011.02426.x PubMedCrossRefGoogle Scholar
  85. Lefevre I, Marchal G, Correal E, Zanuzzi A, Lutts S (2009) Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regul 59:1–11. doi: 10.1007/s10725-009-9382-z CrossRefGoogle Scholar
  86. Li WQ, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50. doi: 10.1007/s10725-005-6324-2 CrossRefGoogle Scholar
  87. Li J, Naeem MS, Wang X et al (2015) Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response. PLoS One 10:e0143885. doi: 10.1371/journal.pone.0143885 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Llanes A, Andrade A, Masciarelli O, Alemano S, Luna V (2015) Drought and salinity alter endogenous hormonal profiles at the seed germination phase. Seed Sci Res. doi: 10.1017/S0960258515000331 Google Scholar
  89. Long TA, Brady SM, Benfey PN (2008) Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol 24:81–103. doi: 10.1146/annurev.cellbio.24.110707.175408 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lu X-J, Zhang X-L, Mei M et al (2016) Proteomic analysis of Magnolia sieboldii K. Koch seed germination. J Proteomics 133:76–85. doi: 10.1016/j.jprot.2015.12.005 PubMedCrossRefGoogle Scholar
  91. Ma F, Ni L, Liu L, Li X, Zhang H, Zhang A, Tan M, Jiang M (2016) ZmABA2, an interacting protein of ZmMPK5, is involved in abscisic acid biosynthesis and functions. Plant Biotechnol J 14:771–782. doi: 10.1111/pbi.12427 PubMedCrossRefGoogle Scholar
  92. Macovei A, Balestrazzi A, Confalonieri M, Faé M, Carbonera D (2011a) New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition. Plant Physiol Biochem 49:1040–1050. doi: 10.1016/j.plaphy.2011.05.007 PubMedCrossRefGoogle Scholar
  93. Macovei A, Balestrazzi A, Confalonieri M, Buttafava A, Carbonera D (2011b) The TFIIS and TFIIS-like genes from Medicago truncatula are involved in the oxidative stress response. Gene 470:20–30. doi: 10.1016/j.gene.2010.09.004 PubMedCrossRefGoogle Scholar
  94. Macovei A, Garg B, Raikwar S, Balestrazzi A, Carbonera D, Buttafava A, Bremont JF, Gill SS, Tuteja N (2014) Synergistic exposure of rice seeds to different doses of γ-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway. Biomed Res Int 2014:676934. doi: 10.1155/2014/676934 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Magwa RA, Zhao H, Xing Y (2016) Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice (Oryza sativa L.). BMC Genet 17:28. doi: 10.1186/s12863-016-0340-2 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Malan HL, Farrat JM (1998) Effects of the metal pollutants cadmium and nickel on soybean seed development. Seed Sci Res 8:445–453CrossRefGoogle Scholar
  97. Mene-Saffrane L, Jones AD, DellaPenna D (2010) Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proc Nat Acad Sci USA 107:17815–17820. doi: 10.1073/pnas.1006971107 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Miransari M, Smith DL (2009) Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology 8:270–275. doi: 10.3923/biotech.2009.270.275 CrossRefGoogle Scholar
  99. Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121. doi: 10.1016/j.envexpbot.2013.11.005 CrossRefGoogle Scholar
  100. Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 52:2017–2038. doi: 10.1093/pcp/pcr153 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mock H-P, Dietz K-J (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochem Biophys Acta. doi: 10.1016/j.bbapap.2016.01.005 Google Scholar
  102. Molitor AM, Bu Z, Yu Y, Shen W-H (2014) Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet 10:e1004091. doi: 10.1371/journal.pgen.1004091 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB (2009) Thioredoxin targets in plants: the first 30 years. J Proteomics 72:452–474. doi: 10.1016/j.jprot.2008.12.002 PubMedCrossRefGoogle Scholar
  104. Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks—using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13:126–131. doi: 10.1016/j.pbi.2009.11.005 PubMedCrossRefGoogle Scholar
  105. Mostek A, Borner A, Weidner S (2016) Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley. Plant Physiol Biochem 99:150–161. doi: 10.1016/j.plaphy.2015.12.007 PubMedCrossRefGoogle Scholar
  106. Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66:5467–5480. doi: 10.1093/jxb/erv208 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709. doi: 10.1111/j.1365-313X.2005.02337.x PubMedCrossRefGoogle Scholar
  108. Nambara E, Nonogaki H (2012) Seed biology in the 21st Century: perspectives and new directions. Plant Cell Physiol 53:1–4. doi: 10.1093/pcp/pcr184 PubMedCrossRefGoogle Scholar
  109. Nawaz F, Ashraf MY, Ahmad R, Waraich EA (2013) Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol Trace Elem Res 151:284–293. doi: 10.1007/s12011-012-9556-9 PubMedCrossRefGoogle Scholar
  110. Nguyen HT, Silva JE, Podicheti R, Macrander J, Yang W, Nazarenus TJ, Nam J-W, Jaworski JG, Lu C, Scheffer BE, Mockaitis K, Cahoon EB (2013) Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J 11:759–769PubMedCrossRefGoogle Scholar
  111. Nonogaki H (2014) Seed dormancy and germination-emerging mechanisms and new hypotheses. Front Plant Sci 5:233. doi: 10.3389/fpls.2014.00233 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nunes C, Primavesi LF, Patel MK, Martinez-Barajas E, Powers SJ, Saquar R, Fevereiro PS, Davis BG, Paul MJ (2013) Inhibition of SnRK1 by metabolites: tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate. Plant Physiol Biochem 63:89–98. doi: 10.1016/j.plaphy.2012.11.011 PubMedCrossRefGoogle Scholar
  113. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiyara Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604PubMedPubMedCentralCrossRefGoogle Scholar
  114. Ogbonnaya FC, Imtiaz M, Ye G et al (2008) Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955. Theor Appl Genet 116:891–902. doi: 10.1007/s00122-008-0712-8 PubMedCrossRefGoogle Scholar
  115. Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505. doi: 10.1104/pp.109.138107 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Pandey GK, Cheong YH, Kim K-N et al (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924. doi: 10.1105/tpc.021311 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293. doi: 10.1007/s00299-015-1784-y PubMedCrossRefGoogle Scholar
  118. Parreira JR, Bouraada J, Fitzpatrick MA, Silvestre S, Bernardes da Silva A, Marques da Silva J, Almeida AM, Fevereiro P, Altelaar AF, Araujo SS (2016) Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.). J Proteomics. doi: 10.1016/j.jprot.2016.03.002 PubMedGoogle Scholar
  119. Pawłowski TA, Staszak AM (2016) Analysis of the embryo proteome of sycamore (Acer pseudoplatanus L.) seeds reveals a distinct class of proteins regulating dormancy release. J Plant Physiol 195:9–22. doi: 10.1016/j.jplph.2016.02.017 PubMedCrossRefGoogle Scholar
  120. Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899. doi: 10.1105/tpc.106.041277 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL (2012) Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. eIJPPR 1:194–202Google Scholar
  122. Qi W, Zhang L, Wang L, Xu H, Jin Q, Jiao Z (2015) Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings. Ecotoxicol Environ Saf 115:243–249. doi: 10.1016/j.ecoenv.2015.02.026 PubMedCrossRefGoogle Scholar
  123. Ragonnaud M (2013) The EU seed and plant reproductive material market in perspective: a focus on companies and market shares. Policy Department B: Structural and Cohesion Policies. European Parliament Committee on Agriculture and Rural Development. Brussels: European Commission. doi: 10.2861/46869
  124. Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923. doi: 10.1104/pp.106.082057 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533. doi: 10.1146/annurev-arplant-042811-105550 PubMedCrossRefGoogle Scholar
  126. Rasheed R, Wahid A, Farooq M, Hussain I, Basra SMA (2011) Role of proline and glycinebetaine pretreatments in improving tolerance of sprouting sugarcane (Saccharum sp.). Plant Growth Regul 65:35. doi: 10.1007/s10725-011-9572-3 CrossRefGoogle Scholar
  127. Rohn H, Junker A, Hartmann A et al (2012) VANTED v2: a framework for systems biology applications. BMC Syst Biol 6:139. doi: 10.1186/1752-0509-6-139 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ruffini Castiglione M, Giorgetti L, Cremonini R, Bottega S, Spanò C (2014) Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects. Protoplasma 251:1471–1479. doi: 10.1007/s00709-014-0649-5 PubMedCrossRefGoogle Scholar
  129. Ruppel NJ, Hangarter RP (2007) Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana. BMC Plant Biol 7:37. doi: 10.1186/1471-2229-7-37 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sato K, Yamane M, Yamaji N et al (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625. doi: 10.1038/ncomms11625 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatment for sustainable agriculture—a review. J Appl Nat Sci 7:521–539Google Scholar
  132. Shu K, Zhang H, Wang S et al (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in arabidopsis. PLoS Genet 9:e1003577. doi: 10.1371/journal.pgen.1003577 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Shu K, Meng YJ, Shuai HW et al (2015) Dormancy and germination: how does the crop seed decide? Plant Biol (Stuttg) 17:1104–1112. doi: 10.1111/plb.12356 CrossRefGoogle Scholar
  134. Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45. doi: 10.1016/j.molp.2015.08.010 PubMedCrossRefGoogle Scholar
  135. Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217. doi: 10.1146/annurev-arplant-050312-120215 PubMedCrossRefGoogle Scholar
  136. Sreenivasulu N, Usadel B, Winter A et al (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758. doi: 10.1104/pp.107.111781 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sugimoto K, Takeuchi Y, Ebana K et al (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci U S A 107:5792–5797. doi: 10.1073/pnas.0911965107 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Tan L, Chen S, Wang T, Dai S (2013) Proteomic insights into seed germination in response to environmental factors. Proteomics 13:1850–1870PubMedCrossRefGoogle Scholar
  139. Tang D, Dong Y, Guo N et al (2014) Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts. J Sci Food Agric 94:1639–1647. doi: 10.1002/jsfa.6471 PubMedCrossRefGoogle Scholar
  140. Tanou G, Fotopoulos V, Molassiotis A (2012) Priming against environmental challenges and proteomics in plants: update and agricultural perspectives. Front Plant Sci 3:216. doi: 10.3389/fpls.2012.00216 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Thiam M, Champion A, Diouf D, Ourèye Sy M (2013) NaCl Effects on in vitro germination and growth of some senegalese cowpea (Vigna unguiculata (L.) Walp.) cultivars. ISRN Biotechnol 2013:382–417. doi: 10.5402/2013/382417 CrossRefGoogle Scholar
  142. Thorstensen T, Fischer A, Sandvik SV et al (2006) The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic Acids Res 34:5461–5470. doi: 10.1093/nar/gkl687 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Vaistij FE, Gan Y, Penfield S et al (2013) Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proc Natl Acad Sci 110:10866–10871. doi: 10.1073/pnas.1301647110 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A (2012) Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem 60:196–206. doi: 10.1016/j.plaphy.2012.07.031 PubMedCrossRefGoogle Scholar
  145. Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A, Town CD, Udvardi MK, Thompson RD (2008) Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol Biol 67:567–580. doi: 10.1007/s11103-008-9320-x PubMedCrossRefGoogle Scholar
  146. Wan JM, Cao YJ, Wang CM, Ikehashi H (2005) Quantitative trait loci associated with seed dormancy in rice. Crop Sci 45:712. doi: 10.2135/cropsci2005.0712 CrossRefGoogle Scholar
  147. Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34. doi: 10.1186/1471-2229-10-34 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wang Y, Li L, Ye T et al (2011) Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J 68:249–261. doi: 10.1111/j.1365-313X.2011.04683.x PubMedCrossRefGoogle Scholar
  149. Wani PA, Khan MS, Zaidi A (2007a) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen uptake in chickpea. Aust J Exp Agric 47:712–720CrossRefGoogle Scholar
  150. Wani PA, Khan MS, Zaidi A (2007b) Cadmium, chromium and copper in greengram plants. Agron Sustain Dev 27:145–153CrossRefGoogle Scholar
  151. Wani PA, Khan MS, Zaidi A (2008) Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown on metal amended soil. B Environ Contam Toxicol 81:152–158. doi: 10.1007/s00128-008-9383-z CrossRefGoogle Scholar
  152. Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010) A plant DNA ligase is an important determinant of seed longevity. Plant J 63:848–860. doi: 10.111/j.1365-313X.2010.04285.x PubMedCrossRefGoogle Scholar
  153. Waterworth WM, Bray CM, West CE (2015) The importance of safeguarding genome integrity in germination and seed longevity. J Exp Bot 66:3549–3558. doi: 10.1093/jxb/erv080 PubMedCrossRefGoogle Scholar
  154. Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707. doi: 10.1093/jxb/eru392 PubMedCrossRefGoogle Scholar
  155. Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309. doi: 10.1093/jxb/err030 PubMedCrossRefGoogle Scholar
  156. Wilson HT, Xu K, Taylor AG (2015) Transcriptome analysis of gelatin seed treatment as a biostimulant of cucumber plant growth. Sci World J 2015:1–14. doi: 10.1155/2015/391234 CrossRefGoogle Scholar
  157. Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci. doi: 10.3389/fpls.2016.00066 PubMedPubMedCentralGoogle Scholar
  158. Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748. doi: 10.1105/tpc.109.073072 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Xin X, Wan Y, Wang W, Yin G, McLamore ES, Lu X (2013) A real-time, non-invasive, micro-optrode technique for detecting seed viability by using oxigen influx. Sci Rep 3:3057. doi: 10.1038/srep03057 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Xing M-Q, Zhang Y-J, Zhou S-R et al (2015) Global analysis reveals the crucial roles of DNA methylation during rice seed development. Plant Physiol 168:1417–1432. doi: 10.1104/pp.15.00414 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Yacoubi R, Job C, Belghazi M, Chaibi W, Job D (2011) Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. J Proteome Res 10:3891–3903. doi: 10.1021/pr101274f PubMedCrossRefGoogle Scholar
  162. Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten HM, Stitt M, Lunn JE (2014) The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot 65:1051–1068. doi: 10.1093/jxb/ert457 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Yan D, Duermeyer L, Leoveanu C, Nambara E (2014) The functions of the endosperm during seed germination. Plant Cell Physiol 55:1521–1533. doi: 10.1093/pcp/pcu089 PubMedCrossRefGoogle Scholar
  164. Yano R, Takebayashi Y, Nambara E et al (2013) Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana. Plant J 74:815–828. doi: 10.1111/tpj.12167 PubMedCrossRefGoogle Scholar
  165. Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J (2012) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot 63:1809–1822. doi: 10.1093/jxb/err336 PubMedCrossRefGoogle Scholar
  166. Yin X, He D, Gupta R, Yang P (2015) Physiological and proteomic analyses on artificially aged Brassica napus seed. Front Plant Sci 6:112. doi: 10.3389/fpls.2015.00112 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yu L-X, Liu X, Boge W, Liu X-P (2016a) Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Front Plant Sci 7:956. doi: 10.3389/fpls.2016.00956 PubMedPubMedCentralGoogle Scholar
  168. Yu Y, Zhen S, Wang S et al (2016b) Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and H2O2 stresses during seed germination. BMC Genom 17:97. doi: 10.1186/s12864-016-2416-9 CrossRefGoogle Scholar
  169. Zhang Y, Chen B, Xu Z, Shi Z, Chen S, Huang X, Chen J, Wang X (2014a) Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J Exp Bot 65:3189–3200. doi: 10.1093/jxb/eru167 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhang D, Chen L, Li D, Lv B, Chen Y, Chen J, Yan X, Liang J (2014b) OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa L.). PLoS One 9:e97120. doi: 10.1371/journal.pone.0097120 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhang T, Yu L-X, Zheng P et al (2015) Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa (Medicago sativa L.) using genome-wide association studies with genotyping by sequencing. PLoS One 10:e0138931. doi: 10.1371/journal.pone.0138931 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zheng J, Chen F, Wang Z et al (2012) A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol 193:605–616. doi: 10.1111/j.1469-8137.2011.03969.x PubMedCrossRefGoogle Scholar
  173. Zhou C, Labbe H, Sridha S et al (2004) Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J 38:715–724. doi: 10.1111/j.1365-313X.2004.02083.x PubMedCrossRefGoogle Scholar
  174. Zhu G, Ye N, Zhang J (2009) Gluctherose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50:644–651. doi: 10.1093/pcp/pcp022 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anca Macovei
    • 1
  • Andrea Pagano
    • 1
  • Paola Leonetti
    • 2
  • Daniela Carbonera
    • 1
  • Alma Balestrazzi
    • 1
  • Susana S. Araújo
    • 1
    • 3
  1. 1.Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
  2. 2.Institute for Sustainable Plant ProtectionNational Council of ResearchBariItaly
  3. 3.Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB-NOVA)OeirasPortugal

Personalised recommendations