Skip to main content
Log in

The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We report that low fertility during intraspecific hybridization in Chinese white poplar was caused by prefertilization barriers, reduced ovules, and embryonic abortion. Hormone concentrations and gene expression patterns were also evaluated during the fertilization process.

Abstract

Hybrid vigor holds tremendous potential for yield increases and trait improvement; however, some hybridization combinations within Populus show very low fertility. To explore the causes of this low fertility in intraspecific hybridization of Chinese white poplar, we examined anatomical structure, hormone levels and expression of key genes in two unique crossing combinations of Populus × tomentosa “Pt02” × P. × tomentosa “LM50”, and (P. × tomentosa × P. alba cv. bolleana “Ptb”) × P. × tomentosa “LM50”. The seed set potential in the intraspecific hybridization P. × tomentosa “Pt02” × P. × tomentosa “LM50” was quite low, which was likely caused by prefertilization barriers, reduced ovule numbers, and embryonic abortion in ovaries. During intraspecific hybridization, we found reduced indoleacetic acid (IAA) in pistils, which may cause pollen tube deformations and increased IAA in heart-stage embryos, which may affect embryo development. Gibberellin A3 (GA3) decreased from the zygote dormancy stage to globular-stage embryos, which may be caused by failure of fertilization in specific embryos. The maximum zeatin (Z) concentration was found in heart-stage embryos, but Z concentrations quickly decreased, which may affect endosperm development. Increasing concentrations of abscisic acid (ABA) during zygote dormancy and eight-cell proembryo stages likely induced abscission of the infructescence. High ABA concentrations also regulated embryo maturity. Measurement of genes expression showed that high expression of SRK and/or SLG may result in rejection of pollen by stigmatic papillae through a mechanism, reminiscent of self-incompatibility. Also, low expression of LEC1 and FUS3 may cause embryonic abortion. Identification and eventual bypassing of these barriers may allow future genetic improvement of this key woody crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arathi HS (2011) Selective embryo abortion in a perennial tree-legume: a case for maternal advantage of reduced seed number per fruit. J Plant Res 124:675–681

    Article  PubMed  CAS  Google Scholar 

  • Baumbusch LO, Hughes DW, Galau GA, Jakobsen KS (2004) LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis. J Exp Bot 394:77–87

    Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York, p 367

  • Cao Y, Hao RZ, Liu MQ, An XM, Jing YP (2012) Distribution of nuclei and microfilaments during pollen germination in Populus tomentosa Carr. Afr J Agric Res 7:2679–2682

    Google Scholar 

  • Ceulemans R, Scarascia-Mugnozza G, Wiard BM, Braatne JH, Hinckley TM, Stettler RF, Isebrands JG, Heilman PE (1992) Production physiology and morphology of Populus species and their hybrids grown under short rotation. I. Clonal comparisons of 4-year growth and phenology. Can J For Res 22:1937–1948

    Article  Google Scholar 

  • Chen W, Lu LX (2001) Endogenous hormones in relation to embryo development in litch. Acta Hort 558:247–250

    CAS  Google Scholar 

  • Chenault N, Arnaud-Haond S, Juteau M, Valade R, Almeida JL, Villar M, Bastien C, Dowkiw A (2011) SSR-based analysis of clonality, spatial genetic structure, and introgression from the Lombardy poplar into a natural population of Populus nigra L. along the Loire River. Tree Genet Genomes 7:1–14

    Article  Google Scholar 

  • Chiwocha S, von Aderkas P (2002) Endogenous levels of free and conjugated forms of auxin, cytokinins, and abscisic acid during seed development in Douglas fir. Plant Growth Reg 36:191–200

    Article  CAS  Google Scholar 

  • Cui YH, Bi YM, Brugière N, Arnoldo M, Steven J, Rothstein SJ (2000) The S locus glycoprotein and the S receptor kinase are sufficient for self-pollen rejection in Brassica. Proc Natl Acad Sci USA 97:3713–3717

    Article  PubMed  CAS  Google Scholar 

  • Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G (2004) AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol 136:3660–3669

    Article  PubMed  CAS  Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  PubMed  CAS  Google Scholar 

  • Eckenwalder JE (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshow HD, Heilman PE Jr, Hinckley TM (eds) Biology of Populus and its implication for management and conservation. NCR Research Press, Ottawa, pp 113–138

    Google Scholar 

  • Fechner GH (1972) Development of the pistillate flower of Populus tremuloides following controlled pollination. Can J Bot 50:2503–2509

    Article  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell Suppl 14:15–45

    Google Scholar 

  • Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56:149–160

    Article  PubMed  CAS  Google Scholar 

  • Goring DR, Rothstein SJ (1992) The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell 4:1273–1281

    PubMed  CAS  Google Scholar 

  • Guries RP, Stettler RF (1976) Pre-fertilization barriers to hybridization in the poplars. Silvae Genetica 25:37–44

    Google Scholar 

  • Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Hatakeyama K, Watanabe M, Takasaki T, Ojima K, Hinata K (1998) Dominance relationships between S-alleles in self-incompatible Brassica campestris L. Heredity 80:241–247

    Article  Google Scholar 

  • Hiscock SJ, Tabah DA (2003) The different mechanisms of sporophytic self-incompatibility. Phil Trans R Soc Lond B 358:1037–1045

    Article  CAS  Google Scholar 

  • José L, García-Martínez, Carbonell J (1985) Induction of fruit set and development in pea ovary explants by gibberellic acid. J Plant Growth Reg 4:19–27

    Article  Google Scholar 

  • Kang XY, Zhu ZT, Zhang ZY (1999) Cytogenetic studies on the origin of Chinese white poplar. Journal of Beijing Forestry University 6:6–10

    Google Scholar 

  • Kurup S, Jones HD, Holdsworth MJ (2000) Interactions of the development regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21:143–155

    Article  PubMed  CAS  Google Scholar 

  • Label P, Imbault N, Villar M (1994) ELISA Quantitation and GC-MS identification of abscisic acid in stigma, ovary and pedicel of pollinated poplar flowers (Populus nigra L.). Tree Physiol 14:521–530

    Article  PubMed  CAS  Google Scholar 

  • Ledbetter CA, Shonnard CB (1991) Berry and seed characteristics associated with stenospermy in vinifera grapes. J Hort Sci 66:247–252

    Google Scholar 

  • Li WD, Fan RW, Mai XL (1982) On the embryological observations of the seed development of Populus simonii Carr. Scientia silvae sinicae 18:113–119

    Google Scholar 

  • Li BL, Gary WW, Dean WE (1993) Hybrid aspen performance and genetic gains. North J Appl For 10:117–122

    Google Scholar 

  • Lin HB, Zhu ZT (1988) Studies on breeding strategies of Populus tomentosa. Journal of Beijing Forestry University 10:97–101

    Google Scholar 

  • Long JA, Barton MK (1998) The development of apical embryonic pattern in Arabidopsis. Development 125:3027–3035

    PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Ma KF, Song YP, Jiang XB, Zhang ZY, Li BL, Zhang DQ (2012) Photosynthetic response to genome methylation affects the growth of Chinese white poplar. Tree Genet Genomes 8(6):1407–1421

    Google Scholar 

  • Meinke DW (1986) Embryo-lethal mutants and the study of plant embryo development. Oxford Surv Plant MoI Cell Biol 3:122–165

    Google Scholar 

  • Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD (1992) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Mofidabadi AJ, Modir-Rahmati AR, Tavesoli A (1998) Application of ovary and ovule culture in Populus alba L. × P. euphratica Oliv. hybridization. Silvae Genetica 47:332–334

    Google Scholar 

  • Nasrallah JB, Nasrallah ME (1993) Pollen-stigma signaling in the sporophytic self-incompatibility response. Plant Cell 5:1325–1335

    PubMed  Google Scholar 

  • Pandey KK (1967) Origin of genetic variability: combinations of peroxidase isozymes determine multiple allelism of the S gene. Nature 18:669–672

    Article  Google Scholar 

  • Quatrano RS, Bartels D, Ho TH, Pages M (1997) New insights into ABA-mediated processes. Plant Cell 9:470–475

    CAS  Google Scholar 

  • Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9:454–459

    Article  PubMed  CAS  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerström M, Czihal A, Tewes A, Ezcurra I, Rask L, Bäumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21:401–408

    Article  PubMed  CAS  Google Scholar 

  • Rivin C, Grudt T (1991) Abscisic acid and the developmental regulation of embryo storage proteins in maize. Plant Physiol 95:358–365

    Article  PubMed  CAS  Google Scholar 

  • Rogers SO, Quatrano RS (1983) Morphological staging of wheat caryopsis development. Amer J Bot 70:308–311

    Article  Google Scholar 

  • Russell SD, Rougier M, Dumas C (1990) Organization of the early post-fertilization megagametophyte of Populus deltoids: ultrastructure and implications for male cytoplasmic transmission. Protoplasma 155:153–165

    Article  Google Scholar 

  • Sage TL, Sampson FB (2003) Evidence for ovarian self-incompatibility as a cause of self-sterility in the relictual woody angiosperm, Pseudowintera axillaris (Winteraceae). Ann Bot 91:807–816

    Article  PubMed  Google Scholar 

  • Sage TL, Strumas F, Cole WW, Barrett SCH (1999) Differential ovule development following self- and cross-pollination: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae). Amer J Bot 86:855–870

    Article  CAS  Google Scholar 

  • Song YP, Ma KF, Bo WH, Zhang ZZ, Zhang DQ (2012) Sex-specific DNA methylation and gene expression in andromonoecious poplar. Plant Cell Rep 31:1393–1405

    Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry, management. Springer, Berlin, pp 307

  • Stanton BJ (2005) The effect of reciprocal hybridization on reproduction of the intersectional cross, Populus × generosa. Forest Genetics 12:131–140

    Google Scholar 

  • Stanton BJ, Villar M (1996) Controlled reproduction of Populus. In: Stettler RF, Bradshow HD, Heilman Jr PE, Hinckley TM (eds) Biology of Populus and its implication for management and conservation. NCR Research Press, Ottawa, pp 113–138

  • Stein JC, Dixit R, Nasrallah ME, Nasrallah JB (1996) SRK, the stigma-specific S locus receptor kinase of Brassica, is targeted to the plasma membrane in transgenic tobacco. Plant Cell 8:429–445

    PubMed  CAS  Google Scholar 

  • Stettler RF, Koster R, Steenackers V (1980) Interspecific crossability studies in poplars. Theor Appl Genet 58:273–282

    Article  Google Scholar 

  • Stettler RF, Zsuffa L, Wu R (1996) The role of hybridization in the genetic manipulation of Populus. In: Stettler RF, Bradshow HD, Heilman Jr PE, Hinckley TM (eds) Biology of Populus and its implication for management and conservation. NCR Research Press, Ottawa, pp 87–112

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Tong JH, Li YW, Huang ZG, Tian M, Ding JH (2009) Simultaneous determination of several phytohormones in cotton root by using high performance liquid chromatography. Prog Mod Biomed 9:2476–2479

    CAS  Google Scholar 

  • Valtueña FJ, Rodríguez-Riaño T, Espinosa F, Ortega-Olivencia A (2010) Self-sterility in two Cytisus species (Leguminosae, papilionoideae) due to early-acting inbreeding depression. Amer J Bot 97:123–135

    Article  Google Scholar 

  • Vanden-Broeck A, Cox K, Villar M (2012) Natural hybridization and potential seed set of sympatric Populus nigra and Populus × canadensis along the river IJzer in Flanders (Belgium). Plant Ecol Evol, fast track: 1–9

  • Villar M, Gaget M, Said C, Knox RB, Dumas C (1987) Incompatibility in Populus: structural and cytochemical characteristics of the receptive stigmas of Populus alba and P. nigra. J Cell Sci 87:487–490

    Google Scholar 

  • Villar M, Gaget M, Rougier M, Dumas C (1993) Pollen-pistil interactions in Populus: β-galactosidase activity associated with pollen tube growth during the crosses Populus nigra × P. nigra and P. nigra × P. alba. Sex Plant Reprod 6:249–256

    Article  Google Scholar 

  • Vogler H, Kuhlemeier C (2003) Simple hormones but complex signaling. Curr Opin Plant Biol 6:51–56

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Shosaku H, Lin BN, Shen DX (1992) A morphological study of seedless fruit formation in the grape cultivar “Wuhebai”. Acta Horticulturae Sinica 1:1–6

    Google Scholar 

  • West MAL, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, Harada JJ (1994) LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:1731–1745

    PubMed  CAS  Google Scholar 

  • Yamagish H, Takayanagi K (1982) Cross-compatibility of Hakuran (Artificially synthesized Brassica napus) with Brassica vegetables. Cruciferae Newsletter 7:34–35

    Google Scholar 

  • Yang QJ, Huang YW, Li HP (2003) Studies on formation and development of embryo and endosperm of Osmanthus fragrans. Journal of Huazhong Agricultural University 22:175–178

    Google Scholar 

  • Zhang T, Copes DL, Zhao S, Huang L (1995) Genetic analysis of the hybrid origin of Populus tomentosa Carr. Silvae Genetica 44:165–173

    Google Scholar 

  • Zhang D, Zhang Z, Yang K, Li B (2004) Genetic mapping in (Populus tomentosa × Populus bolleana) and P. tomentosa Carr. using AFLP markers. Theor Appl Genet 108:657–662

    Article  PubMed  CAS  Google Scholar 

  • Zheng YM, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21:2563–2577

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Li WD (1989) Fertilization and embryo development of Populus lasiocarpa Oliv. Acta Bot Sin 31:355–360

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the following sources: Fundamental Research Funds for Central Universities (No. JC2011-3), and the Project of the National Natural Science Foundation of China (No. 30872042, 31170622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Zhang.

Additional information

Communicated by J. S. Shin.

Deceased: Zhiyi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1373 kb)

Supplementary material 2 (DOC 342 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, K., Song, Y., Huang, Z. et al. The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid. Plant Cell Rep 32, 401–414 (2013). https://doi.org/10.1007/s00299-012-1373-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1373-2

Keywords

Navigation