Skip to main content
Log in

Expression profile analysis of the polygalacturonase-inhibiting protein genes in rice and their responses to phytohormones and fungal infection

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Polygalacturonase-inhibiting proteins (PGIPs) are typically leucine-rich repeat (LRR) proteins that can inhibit the activity of fungal polygalacturonases (PGs). In this study, two new Ospgip genes, named Ospgip6 and Ospgip7 with consensus sequence of ten imperfect LRR motif located on rice chromosomes 8 and 9, were identified using BLAST analysis. Both of them appear to be extracellular glycoproteins. To have a global view of the dynamic gene expression pattern, seven Ospgip genes were first analyzed using the Affymetrix rice genome array data from online resource. All of these seven Ospgip genes showed variable expression patterns among tissues/organs. In order to further investigate the potential function of these Ospgip genes, the responses of Ospgip genes to the treatment of various phytohormones (abscisic acid, brassinosteroid, gibberellic acid, 3-indole acetic acid, jasmonic acid, kinetin, naphthalene acetic acid and salicylic acid) as well as fungal infection were analyzed by real-time PCR using time course array. Generally, all the Ospgip genes were slightly up-regulated in the indica rice cultivar Minghui 63 under GA3, KT and NAA treatments (except Ospgip2, which was down-regulated under KT treatment). In the japonica rice cultivar Zhonghua 11, Ospgip genes were regulated by most treatments with the response time variability. We also analyzed putative cis-elements in the promoter regions of Ospgip genes. This dataset provided a versatile resource to understand the regulatory network of Ospgip genes during the process of phytohormones treatment and fungal infection in the model monocotyledonous plant, rice, and could aid in the transgenic breeding against rice fungal diseases.

Key message

All the seven Ospgip genes showed variable expression patterns in Minghui 63 and their expressions were regulated by different phytohormone treatments or fungal infection in Minghui 63 and Zhonghua 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BR:

Brassinosteroid

GA3 :

Gibberellic acid

IAA:

3-Indole acetic acid

JA:

Jasmonic acid

KT:

Kinetin

NAA:

Naphthalene acetic acid

SA:

Salicylic acid

LRR:

Leucine-rich repeat

References

  • Aguero CB, Uratsu SL, Greve C, Powell ALT, Labavitch JM, Meredith CP, Dandekar AM (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51

    Article  PubMed  CAS  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032

    Article  PubMed  CAS  Google Scholar 

  • Buza NL, Krinitsyna AA, Protsenko AA, Vartapetyan VV (2004) Role of the polygalacturonase inhibitor protein in the ripening of apples and their resistance to Monilia fructigena, a causative agent of fruit rot. Appl Biochem Microbiol 40:89–92

    Article  CAS  Google Scholar 

  • Chen J, Ouyang Y, Wang L, Xie W, Zhang Q (2009) Aspartic proteases gene family in rice: gene structure and expression, predicted protein features and phylogenetic relation. Gene 442:108–118

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Cao YZ, Pan HX, Wang MX, Huang MR (2008) Isolation and characterization of two genes encoding polygalacturonase-inhibiting protein from Populus deltoides. J Genet Genomics 35:631–638

    Article  PubMed  CAS  Google Scholar 

  • D’Ovidio R, Mattei B, Roberti S, Bellincampi D (2004a) Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant–pathogen interactions. BBA Proteins Proteomics 1696:237–244

    Article  Google Scholar 

  • D’Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, De Lorenzo G (2004b) Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol 135:2424–2435

    Article  PubMed  Google Scholar 

  • D’Ovidio R, Roberti S, Di Giovanni M, Capodicasa C, Melaragni M, Sella L, Tosi P, Favaron F (2006) The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta 224:633–645

    Article  PubMed  Google Scholar 

  • De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 5:295–299

    Article  PubMed  Google Scholar 

  • Di Matteo A, Federici L, Mattei B, Salvi G, Johnson KA, Savino C, De Lorenzo G, Tsernoglou D, Cervone F (2003) The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci USA 100:10124–10128

    Article  PubMed  Google Scholar 

  • Federici L, Di Matte A, Fernandez-Recio J, Tsernoglou D, Cervone F (2006) Polygalacturonase inhibiting proteins: players in plant innate immunity? Trends Plant Sci 11:65–70

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G (2003) Tandemly duplicated arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15:93–106

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G (2006) Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe Interact 19:931–936

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough AP, Albrecht H, Stratford R (1993) Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J Cell Mol Biol 3:563–571

    Article  CAS  Google Scholar 

  • Gomathi V, Gnanamanickam SS (2004) Polygalacturonase-inhibiting proteins in plant defence. Curr Sci 87:1211–1217

    CAS  Google Scholar 

  • Hegedus DD, Li RG, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Rimmer SR (2008) Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta 228:241–253

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Howlett B (2001) Pathogenicity genes of phytopathogenic fungi. Mol Plant Pathol 2:241–255

    Article  PubMed  CAS  Google Scholar 

  • Jang SH, Lee B, Kim C, Kim SJ, Yim J, Han JJ, Lee S, Kim SR, An G (2003) The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol 53:357–369

    Article  PubMed  CAS  Google Scholar 

  • Janni M, Di Giovanni M, Roberti S, Capodicasa C, D’Ovidio R (2006) Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor Appl Genet 113:1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Janni M, Sella L, Favaron F, Blechl AE, De Lorenzo G, D’Ovidio R (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe Interact 21:171–177

    Article  PubMed  CAS  Google Scholar 

  • Joubert DA, Slaughter AR, Kemp G, Becker JVW, Krooshof GH, Bergmann C, Benen J, Pretorius IS, Vivier MA (2006) The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res 15:687–702

    Article  PubMed  CAS  Google Scholar 

  • Joubert DA, Kars I, Wagemakers L, Bergmann C, Kemp G, Vivier MA, van Kan JAL (2007) A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol Plant Microbe Interact 20:392–402

    Article  PubMed  CAS  Google Scholar 

  • Juge N (2006) Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci 11:359–367

    Article  PubMed  CAS  Google Scholar 

  • Kemp G, Bergmann CW, Clay R, Van der Westhuizen AJ, Pretorius ZA (2003) Isolation of a polygalacturonase-inhibiting protein (PGIP) from wheat. Mol Plant Microbe Interact 16:955–961

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Cao J, Wu R (1992) Regulation and interaction of multiple protein factors with the proximal promoter regions of a rice high pI alpha-amylase gene. Mol Genet Genomics 232:383–393

    CAS  Google Scholar 

  • Kumar K, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C, Jayashree N, Kokiladevi E, Raja J, Samiyappan R, Sudhakar D (2003) A high throughput functional expression assay system for a defence gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci 165:969–976

    Article  CAS  Google Scholar 

  • Leckie F, Mattei B, Capodicasa C, Hemmings A, Nuss L, Aracri B, De Lorenzo G, Cervone F (1999) The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed beta-strand/beta-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J 18:2352

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Li RG, Rimmer R, Yu M, Sharpe AG, Seguin-Swartz G, Lydiate D, Hegedus DD (2003) Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta 217:299–308

    PubMed  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−[Delta][Delta] CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Xiao J, Li X, Zhang Q, Lian X (2009) Sequence and expression analysis of the C3HC4-type RING finger gene family in rice. Gene 444:33–45

    Article  PubMed  CAS  Google Scholar 

  • Manfredini C, Sicilia F, Ferrari S, Pontiggia D, Salvi G, Caprari C, Lorito M, De Lorenzo G (2005) Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiol Mol Plant Pathol 67:108–115

    Article  CAS  Google Scholar 

  • McElroy D, Rothenberg M, Wu R (1990) Structural characterization of a rice actin gene. Plant Mol Biol 14:163–171

    Article  PubMed  CAS  Google Scholar 

  • Mehli L, Schaart JG, Kjellsen TD, Tran DH, Salentijn EMJ, Schouten HJ, Iversen TH (2004) A gene encoding a polygalacturonase-inhibiting protein (PGIP) shows developmental regulation and pathogen-induced expression in strawberry. New Phytol 163:99–110

    Article  CAS  Google Scholar 

  • Nagao RT, Goekjian VH, Hong JC, Key JL (1993) Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean. Plant Mol Biol 21:1147–1162

    Article  PubMed  CAS  Google Scholar 

  • Nayidu N, Wang L, Xie W, Zhang C, Fan C, Lian X, Zhang Q, Xiong L (2008) Comprehensive sequence and expression profile analysis of PEX11 gene family in rice. Gene 412:59–70

    Article  PubMed  CAS  Google Scholar 

  • Oelofse D, Dubery IA, Meyer R, Arendse MS, Gazendarn I, Berger DK (2006) Apple polygalacturonase inhibiting protein1 expressed in transgenic tobacco inhibits polygalacturonases from fungal pathogens of apple and the anthracnose pathogen of lupins. Phytochemistry 67:255–263

    Article  PubMed  CAS  Google Scholar 

  • Powell A, van Kan J, ten Have A, Visser J, Greve L, Bennett A, Labavitch J (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact 13:942–950

    Article  PubMed  CAS  Google Scholar 

  • Richter A, de Kathen A, de Lorenzo G, Briviba K, Hain R, Ramsay G, Jacobsen HJ, Kiesecker H (2006) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep 25:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406

    PubMed  CAS  Google Scholar 

  • Shanmugam V (2005) Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms. Microbiol Res 160:83–94

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Uknes SJ, Ho TH (1993) Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J Biol Chem 268:23652–23660

    PubMed  CAS  Google Scholar 

  • Sicilia F, Fernandez-Recio J, Caprari C, De Lorenzo G, Tsernoglou D, Cervone F, Federici L (2005) The polygalacturonase-inhibiting protein PGIP2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endopolygalacturonase PG1 of Botrytis cinerea. Plant Physiol 139:1380–1388

    Article  PubMed  CAS  Google Scholar 

  • Song KH, Nam YW (2005) Genomic organization and differential expression of two polygalacturonase-inhibiting protein genes from Medicago truncatula. J Plant Biol 48:467–478

    Article  CAS  Google Scholar 

  • Straub PF, Shen Q, Ho TD (1994) Structure and promoter analysis of an ABA- and stress-regulated barley gene, HVA1. Plant Mol Biol 26:617–630

    Article  PubMed  CAS  Google Scholar 

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207

    Article  PubMed  CAS  Google Scholar 

  • Sutliff TD, Lanahan MB, Ho TH (1993) Gibberellin treatment stimulates nuclear factor binding to the gibberellin response complex in a barley alpha-amylase promoter. Plant cell 5:1681–1692

    PubMed  CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schonherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Gao M, Tao R, Labavitch JM, Dandekar AM (2004) Transformation of persimmon with a pear fruit polygalacturonase inhibiting protein (PGIP) gene. Sci Hortic (Amsterdam) 103:19–30

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China, the National High Technology Research and Development Program of China (863 Program) and the National Program on Research and Development of Transgenic Plants. We would like to thank Dr. M.W. Szczerba for helpful discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Lin.

Additional information

Communicated by Y. Lu.

Electronic supplementary material

Appendix: accession numbers

Appendix: accession numbers

Protein accession numbers

AdPGIP (Actinidia deliciosa, NCBI ID: CAA88846); AtPGIP1-2 (Arabidopsis thaliana, NCBI ID: AAF69827, AAF69828); BnPGIP1-3, 5-17 (Brassica napus, NCBI ID: ABX46548-ABX46563); CmPGIP (Chamaebatiaria millefolium, NCBI ID: AAK43398); CsPGIP (Citrus sinensis, NCBI ID: CAA69910); EgPGIP (Eucalyptus grandis, NCBI ID: AAF22248); GmPGIP1-4 (Glycine max, NCBI ID: CAI99392–CAI99395); HaPGIP (Helianthus annuus, NCBI ID: ABW89508); OsPGIP1-7(Oryza sativa, NCBI ID: CAJ55691, CAJ55692, CAJ55693, CAJ55694, AAO17320, NP_001062185, EEE69955); PaPGIP (Phaseolus acutifolius, NCBI ID: CAR92533); PcPGIP (Pyrus communis, NCBI ID: AAA33865); PpPGIP (Pyrus pyrifolia, NCBI ID: ACY56891); PvPGIP1-4 (Phaseolus vulgaris, NCBI ID: CAH10215–CAH10218); RsPGIP (Rhodotypos scandens, NCBI ID: AAK43455); SbPGIP1-2 (Sorghum bicolor, NCBI ID: XP_002463048, XP_002439097); SlPGIP (Solanum lycopersicum, NCBI ID: AAA53547); SpPGIP (Solanum palustre, NCBI ID: AAT77428); TaPGIP1-2 (Triticum aestivum, NCBI ID: CAJ55695, CAJ55696); VvPGIP (Vitis vinifera, NCBI ID: AAM74142); ZmPGIP1-2 (Zea mays, NCBI ID: NP_001147517, NP_001150670).

Nucleotide accession numbers

Atpgip1-2 (Arabidopsis thaliana, NCBI ID: AF229249, AF229250); Bnpgip1-3, 5-17 (Brassica napus, NCBI ID: EU142023-EU142038); Hapgip (Helianthus annuus, NCBI ID: EU112834); Ospgip1-6 (Oryza sativa, NCBI ID: AM180652–AM180655, NM_001066567, NM_001068720); Rspgip (Rhodotypos scandens, NCBI ID: AF196946); Sbpgip1-2 (Sorghum bicolor, NCBI ID: XM_002463003, NM_001157198); Zmpgip1-2 (Zea mays, NCBI ID: NM_001154045, NM_001157198).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Zhou, F., Zhou, Y. et al. Expression profile analysis of the polygalacturonase-inhibiting protein genes in rice and their responses to phytohormones and fungal infection. Plant Cell Rep 31, 1173–1187 (2012). https://doi.org/10.1007/s00299-012-1239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1239-7

Keywords

Navigation