The accuracy of administrative health data for identifying patients with rheumatoid arthritis: a retrospective validation study using medical records in Western Australia

Abstract

The use of administrative health datasets is increasingly important for research on disease trends and outcome. The Western Australian (WA) Rheumatic Disease Epidemiological Registry contains longitudinal health data for over 10,000 patients with rheumatoid arthritis (RA). Accurate coding for RA is essential to the validity of this dataset. Investigate the diagnostic accuracy of International Classification of Diseases (ICD)-based discharge codes for RA at WA's largest tertiary hospital. Medical records for a sample of randomly selected patients with ICD-10 codes (M05.00–M06.99) in the hospital discharge database between 2008 and 2020 were retrospectively reviewed. Rheumatologist‐reported diagnoses and ACR/EULAR classification criteria were used as reference standards to determine accuracy measures. Medical chart review was completed for 87 patients (mean (± SD) age 64.7 ± 17.2 years), 67.8% female). A total of 80 (91.9%) patients had specialist confirmed RA diagnosis, while seven patients (8%) had alternate clinical diagnoses. Among 87 patients, 69 patients (79.3%) were fulfilled ACR/EULAR classification criteria. The agreement between the reference standards was moderate (Kappa 0.41). Based on rheumatologist‐reported diagnoses and ACR/EULAR classification criteria, primary diagnostic codes for RA alone had a sensitivity of (90% vs 89.8%), and PPV (90.9% vs 63.6%), respectively. A combination of a diagnostic RA code with biologic infusion codes in two or more codes increased the PPV to 97.9%. Hospital discharge diagnostic codes in WA identify RA patients with a high degree of accuracy. Combining a primary diagnostic code for RA with biological infusion codes can further increase the PPV.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Data available within the article or its supplementary materials.

References

  1. 1.

    Safiri S, Kolahi AA, Hoy D, Smith E, Bettampadi D, Mansournia MA, Almasi-Hashiani A, Ashrafi-Asgarabad A, Moradi-Lakeh M, Qorbani M, Collins G, Woolf AD, March L, Cross M (2019) Global, regional and national burden of rheumatoid arthritis 1990–2017: a systematic analysis of the Global Burden of Disease study 2017. Ann Rheum Dis 78(11):1463–1471. https://doi.org/10.1136/annrheumdis-2019-215920

    Article  PubMed  Google Scholar 

  2. 2.

    Almutairi K, Nossent J, Preen D, Keen H, Inderjeeth C (2020) The prevalence of rheumatoid arthritis: a systematic review of population-based studies. J Rheumatol. https://doi.org/10.3899/jrheum.200367

    Article  PubMed  Google Scholar 

  3. 3.

    Uhlig T, Moe RH, Kvien TK (2014) The burden of disease in rheumatoid arthritis. PharmacoEconomics 32(9):841–851. https://doi.org/10.1007/s40273-014-0174-6

    Article  PubMed  Google Scholar 

  4. 4.

    Australian Institute of Health and Welfare (2020) Rheumatoid arthritis. AIHW. https://www.aihw.gov.au/reports/chronic-musculoskeletal-conditions/rheumatoid-arthritis/contents/who-gets-rheumatoid-arthritis. Accessed 10 Sept 2019

  5. 5.

    Cunningham J (2011) Socioeconomic disparities in self-reported arthritis for Indigenous and non-Indigenous Australians aged 18–64. Int J Public Health 56(3):295–304. https://doi.org/10.1007/s00038-010-0228-2

    Article  PubMed  Google Scholar 

  6. 6.

    Al Mutairi KB, Nossent JC, Inderjeeth CA (2020) Validity of self-reported diagnosis of rheumatoid arthritis. J Rheumatol. https://doi.org/10.3899/jrheum.191401

    Article  PubMed  Google Scholar 

  7. 7.

    Kvien TK, Glennås A, Knudsrød OG, Smedstad LM (1996) The validity of self-reported diagnosis of rheumatoid arthritis: results from a population survey followed by clinical examinations. J Rheumatol 23(11):1866–1871

    CAS  PubMed  Google Scholar 

  8. 8.

    Ling SM, Fried LP, Garrett E, Hirsch R, Guralnik JM, Hochberg MC (2000) The accuracy of self-report of physician diagnosed rheumatoid arthritis in moderately to severely disabled older women. J Rheumatol 27(6):1390–1394

    CAS  PubMed  Google Scholar 

  9. 9.

    Star VL, Scott JC, Sherwin R, Lane N, Nevitt MC, Hochberg MC (1996) Validity of self-reported rheumatoid arthritis in elderly women. J Rheumatol 23(11):1862–1865

    CAS  PubMed  Google Scholar 

  10. 10.

    Holman CDJ, Bass AJ, Rouse IL, Hobbs MST (1999) Population-based linkage of health records in Western Australia: development of a health services research linked database. Aust N Z J Public Health 23(5):453–459. https://doi.org/10.1111/j.1467-842X.1999.tb01297.x

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Li J, Morlet N, Semmens J, Gavin A, Ng J, EPSWA (2003) Coding accuracy for endophthalmitis diagnosis and cataract procedures in western Australia: the Endophthalmitis Population Study of Western Australia (EPSWA): second report. Ophthalmic Epidemiol 10(2):133–145. https://doi.org/10.1076/opep.10.2.133.13898

    Article  PubMed  Google Scholar 

  12. 12.

    Bohensky MA, Jolley D, Sundararajan V, Evans S, Pilcher DV, Scott I, Brand CA (2010) Data linkage: a powerful research tool with potential problems. BMC Health Serv Res 10:346. https://doi.org/10.1186/1472-6963-10-346

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Harron K, Dibben C, Boyd J, Hjern A, Azimaee M, Barreto ML, Goldstein H (2017) Challenges in administrative data linkage for research. Big Data Soc. https://doi.org/10.1177/2053951717745678

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hashimoto RE, Brodt ED, Skelly AC, Dettori JR (2014) Administrative database studies: goldmine or goose chase? Evid Based Spine Care J 5(2):74–76. https://doi.org/10.1055/s-0034-1390027

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Western Australian Clinical Coding Authority (2017) Clinical coding policy. WA Health. https://ww2.health.wa.gov.au/About-us/Policy-frameworks/Information-Management/Mandatory-requirements/Collection/Clinical-Coding-Policy. Accessed 10 Sept 2019

  16. 16.

    Preen DB, Holman CDJ, Lawrence DM, Baynham NJ, Semmens JB (2004) Hospital chart review provided more accurate comorbidity information than data from a general practitioner survey or an administrative database. J Clin Epidemiol 57(12):1295–1304. https://doi.org/10.1016/j.jclinepi.2004.03.016

    Article  PubMed  Google Scholar 

  17. 17.

    Valinsky LJ, Hockey RL, Hobbs MST, Fletcher DR, Pikora TJ, Parsons RW, Tan P (1999) Finding bile duct injuries using record linkage: a validated study of complications following cholecystectomy. J Clin Epidemiol 52(9):893–901. https://doi.org/10.1016/s0895-4356(99)00043-8

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Clark A, Morlet N, Ng JQ, Preen DB, Semmens JB (2011) Whole population trends in complications of cataract surgery over 22 years in Western Australia. Ophthalmology 118(6):1055–1061. https://doi.org/10.1016/j.ophtha.2010.11.001

    Article  PubMed  Google Scholar 

  19. 19.

    Nossent JC, Raymond W, Keen H, Preen DB, Inderjeeth CA (2020) Infection rates before and after diagnosis of IgA vasculitis in childhood: a population-wide study using non-exposed matched controls. J Rheumatol 47(3):424–430. https://doi.org/10.3899/jrheum.190110

    Article  PubMed  Google Scholar 

  20. 20.

    Ognjenovic M, Raymond W, Inderjeeth C, Keen H, Preen D, Nossent J (2020) The risk and consequences of vertebral fracture in patients with Ankylosing Spondylitis: a population-based data linkage study. J Rheumatol. https://doi.org/10.3899/jrheum.190675

    Article  PubMed  Google Scholar 

  21. 21.

    De Coster C, Quan H, Finlayson A, Gao M, Halfon P, Humphries KH, Johansen H, Lix LM, Luthi J-C, Ma J, Romano PS, Roos L, Sundararajan V, Tu JV, Webster G, Ghali WA (2006) Identifying priorities in methodological research using ICD-9-CM and ICD-10 administrative data: report from an international consortium. BMC Health Serv Res 6:77. https://doi.org/10.1186/1472-6963-6-77

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Sibthorpe B, Kliewer E, Smith L (1995) Record linkage in Australian epidemiological research: health benefits, privacy safeguards and future potential. Aust N Z J Public Health 19(3):250–256. https://doi.org/10.1111/j.1753-6405.1995.tb00439.x

    CAS  Article  Google Scholar 

  23. 23.

    Brownson RC, Petitti DB (2006) Applied epidemiology: theory to practice, 2nd edn. Oxford University Press, New York

    Google Scholar 

  24. 24.

    Kvien TK (2004) Epidemiology and burden of illness of rheumatoid arthritis. PharmacoEconomics 22(1):1–12. https://doi.org/10.2165/00019053-200422001-00002

    Article  PubMed  Google Scholar 

  25. 25.

    Widdifield J (2019) Preventing rheumatoid arthritis: a global challenge. Clin Ther 41(7):1355–1365. https://doi.org/10.1016/j.clinthera.2019.04.019

    Article  PubMed  Google Scholar 

  26. 26.

    Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HCW, Bossuyt PMM (2016) STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6(11):e012799. https://doi.org/10.1136/bmjopen-2016-012799

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Almutairi K, Nossent J, Preen D, Keen H, Rogers K, Inderjeeth C (2019) The accuracy of hospital discharge data in identifying the Rheumatoid Arthritis (RA) patients to measure the burden of disease—a quality assurance project. https://geko.hdwa.health.wa.gov.au. Accessed 18 Feb 2021

  28. 28.

    Sir Charles Gairdner Hospital (2018) Welcome to Sir Charles Gairdner Hospital: information for your planned admission. WA Health. https://www.scgh.health.wa.gov.au/~/media/HSPs/NMHS/Hospitals/SCGH/Documents/Patients/WelcometoSCGHbooklet.pdf. Accessed 10 Sept 2019

  29. 29.

    Widdifield J, Bernatsky S, Paterson JM, Tu K, Ng R, Thorne JC, Pope JE, Bombardier C (2013) Accuracy of Canadian health administrative databases in identifying patients with rheumatoid arthritis: a validation study using the medical records of rheumatologists. Arthritis Care Res (Hoboken) 65(10):1582–1591. https://doi.org/10.1002/acr.22031

    Article  Google Scholar 

  30. 30.

    Widdifield J, Bombardier C, Bernatsky S, Paterson JM, Green D, Young J, Ivers N, Butt DA, Jaakkimainen RL, Thorne JC, Tu K (2014) An administrative data validation study of the accuracy of algorithms for identifying rheumatoid arthritis: the influence of the reference standard on algorithm performance. BMC Musculoskelet Disord 15:216. https://doi.org/10.1186/1471-2474-15-216

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Lacaille D, Anis AH, Guh DP, Esdaile JM (2005) Gaps in care for rheumatoid arthritis: a population study. Arthritis Rheum 53(2):241–248. https://doi.org/10.1002/art.21077

    Article  PubMed  Google Scholar 

  32. 32.

    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham Iii CO, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JMW, Hobbs K, Huizinga TWJ, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Ménard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovský J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581. https://doi.org/10.1002/art.27584

    Article  PubMed  Google Scholar 

  33. 33.

    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger TA, Mitchell DM, Neustadt DH, Pinals RS, Schaller JG, Sharp JT, Wilder RL, Hunder GG (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324. https://doi.org/10.1002/art.1780310302

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Kasturi S, Goldstein BL, Malspeis S, Karlson EW, Costenbader KH (2014) Comparison of the 1987 American College of Rheumatology and the 2010 American College of Rheumatology/European League against Rheumatism criteria for classification of rheumatoid arthritis in the Nurses’ Health Study cohorts. Rheumatol Int 34(3):407–411. https://doi.org/10.1007/s00296-013-2865-2

    Article  PubMed  Google Scholar 

  35. 35.

    De Rooy DPC, Willemze A, Mertens B, Huizinga TWJ, Van der Helm-van Mil AHM (2011) Can anti-cyclic citrullinated peptide antibody-negative RA be subdivided into clinical subphenotypes? Arthritis Res Ther 13(5):R180. https://doi.org/10.1186/ar3505

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Mouterde G, Rincheval N, Lukas C, Daien C, Saraux A, Dieudé P, Morel J, Combe B (2019) Outcome of patients with early arthritis without rheumatoid factor and ACPA and predictors of rheumatoid arthritis in the ESPOIR cohort. Arthritis Res Ther 21:140. https://doi.org/10.1186/s13075-019-1909-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wagner CA, Sokolove J, Lahey LJ, Bengtsson C, Saevarsdottir S, Alfredsson L, Delanoy M, Lindstrom TM, Walker RP, Bromberg R, Chandra PE, Binder SR, Klareskog L, Robinson WH (2015) Identification of anticitrullinated protein antibody reactivities in a subset of anti-CCP-negative rheumatoid arthritis: association with cigarette smoking and HLA-DRB1 “shared epitope” alleles. Ann Rheum Dis 74(3):579–586. https://doi.org/10.1136/annrheumdis-2013-203915

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Aggarwal R, Ringold S, Khanna D, Neogi T, Johnson SR, Miller A, Brunner HI, Ogawa R, Felson D, Ogdie A, Aletaha D, Feldman BM (2015) Distinctions between diagnostic and classification criteria? Arthritis Care Res (Hoboken) 67(7):891–897. https://doi.org/10.1002/acr.22583

    Article  Google Scholar 

  39. 39.

    Banal F, Dougados M, Combescure C, Gossec L (2009) Sensitivity and specificity of the American College of Rheumatology 1987 criteria for the diagnosis of rheumatoid arthritis according to disease duration: a systematic literature review and meta-analysis. Ann Rheum Dis 68(7):1184–1191. https://doi.org/10.1136/ard.2008.093187

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Kuriya B, Cheng CK, Chen HM, Bykerk VP (2009) Validation of a prediction rule for development of rheumatoid arthritis in patients with early undifferentiated arthritis. Ann Rheum Dis 68(9):1482–1485. https://doi.org/10.1136/ard.2008.092676

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Waldenlind K, Eriksson JK, Grewin B, Askling J (2014) Validation of the rheumatoid arthritis diagnosis in the Swedish National Patient Register: a cohort study from Stockholm County. BMC Musculoskelet Disord 15:432. https://doi.org/10.1186/1471-2474-15-432

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Boutry N, do Carmo CCM, Flipo R-M, Cotten A (2009) Early rheumatoid arthritis and its differentiation from other joint abnormalities. Eur J Radiol 71(2):217–224. https://doi.org/10.1016/j.ejrad.2009.02.013

    Article  PubMed  Google Scholar 

  43. 43.

    Machold KP, Stamm TA, Eberl GJ, Nell VK, Dunky A, Uffmann M, Smolen JS (2002) Very recent onset arthritis—clinical, laboratory, and radiological findings during the first year of disease. J Rheumatol 29(11):2278–2287

    PubMed  Google Scholar 

  44. 44.

    Paalanen K, Rannio K, Rannio T, Asikainen J, Hannonen P, Sokka T (2019) Does early seronegative arthritis develop into rheumatoid arthritis? A 10-year observational study. Clin Exp Rheumatol 37(1):37–43

    PubMed  Google Scholar 

  45. 45.

    Cho S-K, Sung Y-K, Choi C-B, Kwon J-M, Lee E-K, Bae S-C (2013) Development of an algorithm for identifying rheumatoid arthritis in the Korean National Health Insurance claims database. Rheumatol Int 33(12):2985–2992. https://doi.org/10.1007/s00296-013-2833-x

    Article  PubMed  Google Scholar 

  46. 46.

    Gabriel SE (1994) The sensitivity and specificity of computerized databases for the diagnosis of rheumatoid arthritis. Arthritis Rheum 37(6):821–823. https://doi.org/10.1002/art.1780370607

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Smolen JS, Landewé R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, Gorter S, Knevel R, Nam J, Schoels M, Aletaha D, Buch M, Gossec L, Huizinga T, Bijlsma JWJW, Burmester G, Combe B, Cutolo M, Gabay C, Gomez-Reino J, Kouloumas M, Kvien TK, Martin-Mola E, McInnes I, Pavelka K, van Riel P, Scholte M, Scott DL, Sokka T, Valesini G, van Vollenhoven R, Winthrop KL, Wong J, Zink A, van der Heijde D (2010) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis 69(6):964–975. https://doi.org/10.1136/ard.2009.126532

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Edwards CJ, Campbell J, van Staa T, Arden NK (2012) Regional and temporal variation in the treatment of rheumatoid arthritis across the UK: a descriptive register-based cohort study. BMJ Open 2(6):e001603. https://doi.org/10.1136/bmjopen-2012-001603

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Hodkinson B, Tikly M, Adebajo A (2014) Rheumatoid arthritis in the developing world: stepping up to the challenge. Clin Rheumatol 33:1195–1196. https://doi.org/10.1007/s10067-014-2690-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

KA was supported by an Australian Government Research Training Program PhD Scholarship at the University of Western Australia (UWA).

Funding

This study was not funded, and no funding agencies had input into the design or conduct of the study.

Author information

Affiliations

Authors

Contributions

Conceptualisation and design of the study: KM, HN, CI, DP, and HK; Data acquisition: KM, KR and HN; Data analysis: KM; Writing—original draft: KM. Writing—review and editing: KM, HN, CI, DP, and HK. All the authors have approved the final manuscript and take full responsibility for the integrity of the data and the contents of the manuscript.

Corresponding author

Correspondence to Khalid Almutairi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standards

The study was approved by the Institutional Review Board (number 27931) and designated as exempt from review by the Sir Charles Gairdner Hospital Human Research and Ethics Committee due to the minimal risk nature of the study.

Consent of publication

All authors agreed to publish in Rheumatology International Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8362 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almutairi, K., Inderjeeth, C., Preen, D.B. et al. The accuracy of administrative health data for identifying patients with rheumatoid arthritis: a retrospective validation study using medical records in Western Australia. Rheumatol Int (2021). https://doi.org/10.1007/s00296-021-04811-9

Download citation

Keywords

  • Arthritis
  • Rheumatoid
  • Routinely collected health data
  • Data accuracy
  • Epidemiologic research design
  • Predictive value of tests