Rheumatology International

, Volume 38, Issue 6, pp 1031–1041 | Cite as

Skeletal muscle stem cell characteristics and myonuclei content in patients with rheumatoid arthritis: a cross-sectional study

  • Rasmus Jentoft Boutrup
  • Jean Farup
  • Kristian Vissing
  • Michael Kjaer
  • Ulla Ramer Mikkelsen
Observational Research


To investigate satellite cells (SCs) and myonuclei characteristics in patients with rheumatoid arthritis (RA). Resting biopsies from m. vastus lateralis were obtained from thirteen RA patients and thirteen matched healthy controls (CON). Muscle biopsies were immunohistochemically stained and analyzed for fiber type specific content of SCs (Pax7+), proliferating SCs (Pax7+/MyoD+) and differentiating SCs (myogenin+). Furthermore, we quantified fiber type specific content of myonuclei and myofiber cross-sectional area (CSA). Finally, newly formed/regenerating fibers expressing neonatal MHC (nMHC+) were determined. The fiber type specific number of SCs did not differ between RA patients and CON, nor did the content of proliferating or differentiating SCs. In contrast, the content of myonuclei per fiber was higher in RA patients than CON for both type I (2.01 ± 0.41 vs. 1.42 ± 0.40 myonuclei/fiber, p < 0.01) and type II fibers (2.01 ± 0.41 vs. 1.37 ± 0.32 myonuclei/fiber, p < 0.01). No differences were observed in fiber composition, fiber type specific CSA or content of nMHC+ fibers. Our results indicate an increased propensity for myogenic differentiation of SC leading to an elevated myonuclear content in the skeletal muscle of RA patients. It is hypothesized that this could be a compensatory regulatory response related to the chronic inflammation in these patients.


Cross-sectional studies Interleukin-6 Rheumatoid arthritis Skeletal muscle Stem cells Tumor necrosis factor-alpha 





Cross-sectional area




Janus kinase 2


Low-grade inflammation


Rheumatoid arthritis


Satellite cell


Signal transducer and activator of transcription 3


Suppressor of cytokine signaling 3


Tumor necrosis factor-alpha



We would like to thank all the participants in the study and Simon Riis for analyzing the MRI data.

Author contributions

Conceived the study: RJB, JF, MK, URM. Participated in the study design: RJB, JF, MK, URM. Carried out the study: RJB, JF, KV, URM. Data acquisition: RJB, JF. Data analyses and interpretation: RJB, JF, KV, URM. Wrote the manuscript: RJB, JF, KV, URM. All authors have read and approved the final version of the manuscript.


The study was funded by The Danish Medical Research Council (10-094021) and the Nordea Foundation (Center for Healthy Aging).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

The study was approved by The Research Ethics Committees of the Capital Region of Denmark (H-4-2011-028) and conformed to the Declaration of Helsinki.

Informed consent

Written informed consent was obtained from all subjects before participation.


  1. 1.
    Hannan MT (1996) Epidemiologic perspectives on women and arthritis: an overview. Arthritis Care Res 9(6):424–434CrossRefPubMedGoogle Scholar
  2. 2.
    Sokka T, Hakkinen A, Kautiainen H, Maillefert JF, Toloza S, Mork Hansen T, Calvo-Alen J, Oding R, Liveborn M, Huisman M, Alten R, Pohl C, Cutolo M, Immonen K, Woolf A, Murphy E, Sheehy C, Quirke E, Celik S, Yazici Y, Tlustochowicz W, Kapolka D, Skakic V, Rojkovich B, Muller R, Stropuviene S, Andersone D, Drosos AA, Lazovskis J, Pincus T (2008) Physical inactivity in patients with rheumatoid arthritis: data from twenty-one countries in a cross-sectional, international study. Arthritis Rheum 59(1):42–50. CrossRefPubMedGoogle Scholar
  3. 3.
    Summers GD, Deighton CM, Rennie MJ, Booth AH (2008) Rheumatoid cachexia: a clinical perspective. Rheumatology 47(8):1124–1131. CrossRefPubMedGoogle Scholar
  4. 4.
    Baker JF, Von Feldt J, Mostoufi-Moab S, Noaiseh G, Taratuta E, Kim W, Leonard MB (2014) Deficits in muscle mass, muscle density, and modified associations with fat in rheumatoid arthritis. Arthritis Care Res (Hoboken) 66(11):1612–1618. CrossRefGoogle Scholar
  5. 5.
    Kerekes G, Nurmohamed MT, Gonzalez-Gay MA, Seres I, Paragh G, Kardos Z, Barath Z, Tamasi L, Soltesz P, Szekanecz Z (2014) Rheumatoid arthritis and metabolic syndrome. Nat Rev Rheumatol 10(11):691–696. CrossRefPubMedGoogle Scholar
  6. 6.
    Sokka T, Abelson B, Pincus T (2008) Mortality in rheumatoid arthritis: 2008 update. Clin Exp Rheumatol 26(5 Suppl 51):S35-61PubMedGoogle Scholar
  7. 7.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39(5):687–699. CrossRefPubMedGoogle Scholar
  9. 9.
    Shrivastava AK, Singh HV, Raizada A, Singh SK, Pandey A, Singh N, Yadav DS, Sharma H (2015) Inflammatory markers in patients with rheumatoid arthritis. Allergol Immunopathol (Madrid) 43(1):81–87. CrossRefGoogle Scholar
  10. 10.
    Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25(4):885–894. CrossRefPubMedGoogle Scholar
  11. 11.
    Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V (2002) Regenerative potential of human skeletal muscle during aging. Aging Cell 1(2):132–139CrossRefPubMedGoogle Scholar
  12. 12.
    Kurosaka M, Machida S (2013) Interleukin-6-induced satellite cell proliferation is regulated by induction of the JAK2/STAT3 signalling pathway through cyclin D1 targeting. Cell Prolif 46(4):365–373. CrossRefPubMedGoogle Scholar
  13. 13.
    Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20(10):1182–1186. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Haddad F, Zaldivar F, Cooper DM, Adams GR (2005) IL-6-induced skeletal muscle atrophy. J Appl Physiol 98(3):911–917. CrossRefPubMedGoogle Scholar
  15. 15.
    Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, Marquez VE, Valente S, Mai A, Forcales SV, Sartorelli V, Puri PL (2010) TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7(4):455–469. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mikkelsen UR, Dideriksen K, Andersen MB, Boesen A, Malmgaard-Clausen NM, Sorensen IJ, Schjerling P, Kjaer M, Holm L (2015) Preserved skeletal muscle protein anabolic response to acute exercise and protein intake in well-treated rheumatoid arthritis patients. Arthritis Res Ther 17:271. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Farup J, Rahbek SK, Riis S, Vendelbo MH, Paoli F, Vissing K (2014) Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. J Appl Physiol 117(8):898–909. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hoedt A, Christensen B, Nellemann B, Mikkelsen UR, Hansen M, Schjerling P, Farup J (2016) Satellite cell response to erythropoietin treatment and endurance training in healthy young men. J Physiol 594(3):727–743. CrossRefPubMedGoogle Scholar
  19. 19.
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786CrossRefPubMedGoogle Scholar
  20. 20.
    Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–283. CrossRefPubMedGoogle Scholar
  21. 21.
    Beenakker KG, Duijnisveld BJ, Van Der Linden HM, Visser CP, Westendorp RG, Butler-Brown G, Nelissen RG, Maier AB (2012) Muscle characteristics in patients with chronic systemic inflammation. Muscle Nerve 46(2):204–209. CrossRefPubMedGoogle Scholar
  22. 22.
    Nishina N, Kaneko Y, Kameda H, Kuwana M, Takeuchi T (2013) Reduction of plasma IL-6 but not TNF-alpha by methotrexate in patients with early rheumatoid arthritis: a potential biomarker for radiographic progression. Clin Rheumatol 32(11):1661–1666. CrossRefPubMedGoogle Scholar
  23. 23.
    Kremer JM, Lawrence DA, Hamilton R, McInnes IB (2016) Long-term study of the impact of methotrexate on serum cytokines and lymphocyte subsets in patients with active rheumatoid arthritis: correlation with pharmacokinetic measures. RMD Open. PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Metsios GS, Stavropoulos-Kalinoglou A, Douglas KM, Koutedakis Y, Nevill AM, Panoulas VF, Kita M, Kitas GD (2007) Blockade of tumour necrosis factor-alpha in rheumatoid arthritis: effects on components of rheumatoid cachexia. Rheumatology 46(12):1824–1827. CrossRefPubMedGoogle Scholar
  25. 25.
    Bearne LM, Scott DL, Hurley MV (2002) Exercise can reverse quadriceps sensorimotor dysfunction that is associated with rheumatoid arthritis without exacerbating disease activity. Rheumatology 41(2):157–166CrossRefPubMedGoogle Scholar
  26. 26.
    Manicourt DH, Triki R, Fukuda K, Devogelaer JP, Nagant de Deuxchaisnes C, Thonar EJ (1993) Levels of circulating tumor necrosis factor alpha and interleukin-6 in patients with rheumatoid arthritis. Relationship to serum levels of hyaluronan and antigenic keratan sulfate. Arthritis Rheum 36(4):490–499CrossRefPubMedGoogle Scholar
  27. 27.
    Schulz M, Dotzlaw H, Neeck G (2014) Ankylosing spondylitis and rheumatoid arthritis: serum levels of TNF-alpha and Its soluble receptors during the course of therapy with etanercept and infliximab. Biomed Res Int 2014:675108.
  28. 28.
    Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP (2013) Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 45(10):2163–2172. CrossRefPubMedGoogle Scholar
  29. 29.
    Mackey AL, Rasmussen LK, Kadi F, Schjerling P, Helmark IC, Ponsot E, Aagaard P, Durigan JL, Kjaer M (2016) Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. FASEB J Off Publ Fed Am Soc Exp Biol 30(6):2266–2281. CrossRefGoogle Scholar
  30. 30.
    Mikkelsen UR, Langberg H, Helmark IC, Skovgaard D, Andersen LL, Kjaer M, Mackey AL (2009) Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol (Bethesda, Md 1985) 107 (5):1600–1611. CrossRefGoogle Scholar
  31. 31.
    Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Dossing S, Kadi F, Koskinen SO, Jensen CH, Schroder HD, Langberg H (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol (Bethesda, Md 1985) 103(2):425–431. CrossRefGoogle Scholar
  32. 32.
    Verdijk LB, Gleeson BG, Jonkers RA, Meijer K, Savelberg HH, Dendale P, van Loon LJ (2009) Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol Ser A Biol Sci Med Sci 64(3):332–339. CrossRefGoogle Scholar
  33. 33.
    Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15(12):666–673. CrossRefPubMedGoogle Scholar
  34. 34.
    Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, van Loon LJ (2013) The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol 48(5):492–498. CrossRefPubMedGoogle Scholar
  35. 35.
    Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ (2014) Satellite cells in human skeletal muscle; from birth to old age. Age (Dordrecht Netherlands) 36(2):545–547. CrossRefGoogle Scholar
  36. 36.
    Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM (2006) Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291(5):E937-946. CrossRefGoogle Scholar
  37. 37.
    Wroblewski R, Nordemar R (1975) Ultrastructural and histochemical studies of muscle in rheumatoid arthritis. Scand J Rheumatol 4(4):197–204CrossRefPubMedGoogle Scholar
  38. 38.
    Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7(1):33–44. CrossRefPubMedGoogle Scholar
  39. 39.
    Gundersen K (2016) Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J Exp Biol 219(Pt 2):235–242. CrossRefPubMedGoogle Scholar
  40. 40.
    Balage M, Averous J, Rémond D, Bos C, Pujos-Guillot E, Papet I, Mosoni L, Combaret L, Dardevet D (2010) Presence of low-grade inflammation impaired postprandial stimulation of muscle protein synthesis in old rats. J Nutr Biochem 21(4):325–331. CrossRefPubMedGoogle Scholar
  41. 41.
    Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C, Peyron MA, Combaret L, Dardevet D (2009) Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J Physiol 587(Pt 22):5483–5492. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lang CH, Frost RA, Nairn AC, MacLean DA, Vary TC (2002) TNF-α impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metab 282(2):E336-E347. CrossRefGoogle Scholar
  43. 43.
    Dideriksen K, Reitelseder S, Malmgaard-Clausen NM, Bechshoeft R, Petersen RK, Mikkelsen UR, Holm L (2016) No effect of anti-inflammatory medication on postprandial and postexercise muscle protein synthesis in elderly men with slightly elevated systemic inflammation. Exp Gerontol 83:120–129. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section for Sport Science, Department of Public HealthAarhus UniversityAarhus CDenmark
  2. 2.Research Laboratory for Biochemical Pathology, Department for Clinical MedicineAarhus UniversityAarhusDenmark
  3. 3.Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center Healthy Aging, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations