Skip to main content

Advertisement

Log in

Skeletal muscle stem cell characteristics and myonuclei content in patients with rheumatoid arthritis: a cross-sectional study

  • Observational Research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

To investigate satellite cells (SCs) and myonuclei characteristics in patients with rheumatoid arthritis (RA). Resting biopsies from m. vastus lateralis were obtained from thirteen RA patients and thirteen matched healthy controls (CON). Muscle biopsies were immunohistochemically stained and analyzed for fiber type specific content of SCs (Pax7+), proliferating SCs (Pax7+/MyoD+) and differentiating SCs (myogenin+). Furthermore, we quantified fiber type specific content of myonuclei and myofiber cross-sectional area (CSA). Finally, newly formed/regenerating fibers expressing neonatal MHC (nMHC+) were determined. The fiber type specific number of SCs did not differ between RA patients and CON, nor did the content of proliferating or differentiating SCs. In contrast, the content of myonuclei per fiber was higher in RA patients than CON for both type I (2.01 ± 0.41 vs. 1.42 ± 0.40 myonuclei/fiber, p < 0.01) and type II fibers (2.01 ± 0.41 vs. 1.37 ± 0.32 myonuclei/fiber, p < 0.01). No differences were observed in fiber composition, fiber type specific CSA or content of nMHC+ fibers. Our results indicate an increased propensity for myogenic differentiation of SC leading to an elevated myonuclear content in the skeletal muscle of RA patients. It is hypothesized that this could be a compensatory regulatory response related to the chronic inflammation in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CON:

Control

CSA:

Cross-sectional area

IL-6:

Interleukin-6

JAK2:

Janus kinase 2

LGI:

Low-grade inflammation

RA:

Rheumatoid arthritis

SC:

Satellite cell

STAT3:

Signal transducer and activator of transcription 3

SOCS3:

Suppressor of cytokine signaling 3

TNF-α:

Tumor necrosis factor-alpha

References

  1. Hannan MT (1996) Epidemiologic perspectives on women and arthritis: an overview. Arthritis Care Res 9(6):424–434

    Article  PubMed  CAS  Google Scholar 

  2. Sokka T, Hakkinen A, Kautiainen H, Maillefert JF, Toloza S, Mork Hansen T, Calvo-Alen J, Oding R, Liveborn M, Huisman M, Alten R, Pohl C, Cutolo M, Immonen K, Woolf A, Murphy E, Sheehy C, Quirke E, Celik S, Yazici Y, Tlustochowicz W, Kapolka D, Skakic V, Rojkovich B, Muller R, Stropuviene S, Andersone D, Drosos AA, Lazovskis J, Pincus T (2008) Physical inactivity in patients with rheumatoid arthritis: data from twenty-one countries in a cross-sectional, international study. Arthritis Rheum 59(1):42–50. https://doi.org/10.1002/art.23255

    Article  PubMed  Google Scholar 

  3. Summers GD, Deighton CM, Rennie MJ, Booth AH (2008) Rheumatoid cachexia: a clinical perspective. Rheumatology 47(8):1124–1131. https://doi.org/10.1093/rheumatology/ken146

    Article  PubMed  CAS  Google Scholar 

  4. Baker JF, Von Feldt J, Mostoufi-Moab S, Noaiseh G, Taratuta E, Kim W, Leonard MB (2014) Deficits in muscle mass, muscle density, and modified associations with fat in rheumatoid arthritis. Arthritis Care Res (Hoboken) 66(11):1612–1618. https://doi.org/10.1002/acr.22328

    Article  Google Scholar 

  5. Kerekes G, Nurmohamed MT, Gonzalez-Gay MA, Seres I, Paragh G, Kardos Z, Barath Z, Tamasi L, Soltesz P, Szekanecz Z (2014) Rheumatoid arthritis and metabolic syndrome. Nat Rev Rheumatol 10(11):691–696. https://doi.org/10.1038/nrrheum.2014.121

    Article  PubMed  CAS  Google Scholar 

  6. Sokka T, Abelson B, Pincus T (2008) Mortality in rheumatoid arthritis: 2008 update. Clin Exp Rheumatol 26(5 Suppl 51):S35-61

    PubMed  Google Scholar 

  7. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39(5):687–699. https://doi.org/10.1016/j.exger.2004.01.009

    Article  PubMed  CAS  Google Scholar 

  9. Shrivastava AK, Singh HV, Raizada A, Singh SK, Pandey A, Singh N, Yadav DS, Sharma H (2015) Inflammatory markers in patients with rheumatoid arthritis. Allergol Immunopathol (Madrid) 43(1):81–87. https://doi.org/10.1016/j.aller.2013.11.003

    Article  CAS  Google Scholar 

  10. Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25(4):885–894. https://doi.org/10.1634/stemcells.2006-0372

    Article  PubMed  CAS  Google Scholar 

  11. Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V (2002) Regenerative potential of human skeletal muscle during aging. Aging Cell 1(2):132–139

    Article  PubMed  CAS  Google Scholar 

  12. Kurosaka M, Machida S (2013) Interleukin-6-induced satellite cell proliferation is regulated by induction of the JAK2/STAT3 signalling pathway through cyclin D1 targeting. Cell Prolif 46(4):365–373. https://doi.org/10.1111/cpr.12045

    Article  PubMed  CAS  Google Scholar 

  13. Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20(10):1182–1186. https://doi.org/10.1038/nm.3656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Haddad F, Zaldivar F, Cooper DM, Adams GR (2005) IL-6-induced skeletal muscle atrophy. J Appl Physiol 98(3):911–917. https://doi.org/10.1152/japplphysiol.01026.2004

    Article  PubMed  CAS  Google Scholar 

  15. Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, Marquez VE, Valente S, Mai A, Forcales SV, Sartorelli V, Puri PL (2010) TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7(4):455–469. https://doi.org/10.1016/j.stem.2010.08.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mikkelsen UR, Dideriksen K, Andersen MB, Boesen A, Malmgaard-Clausen NM, Sorensen IJ, Schjerling P, Kjaer M, Holm L (2015) Preserved skeletal muscle protein anabolic response to acute exercise and protein intake in well-treated rheumatoid arthritis patients. Arthritis Res Ther 17:271. https://doi.org/10.1186/s13075-015-0758-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Farup J, Rahbek SK, Riis S, Vendelbo MH, Paoli F, Vissing K (2014) Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. J Appl Physiol 117(8):898–909. https://doi.org/10.1152/japplphysiol.00261.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hoedt A, Christensen B, Nellemann B, Mikkelsen UR, Hansen M, Schjerling P, Farup J (2016) Satellite cell response to erythropoietin treatment and endurance training in healthy young men. J Physiol 594(3):727–743. https://doi.org/10.1113/jp271333

    Article  PubMed  CAS  Google Scholar 

  19. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786

    Article  PubMed  CAS  Google Scholar 

  20. Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–283. https://doi.org/10.1006/dbio.1997.8721

    Article  PubMed  CAS  Google Scholar 

  21. Beenakker KG, Duijnisveld BJ, Van Der Linden HM, Visser CP, Westendorp RG, Butler-Brown G, Nelissen RG, Maier AB (2012) Muscle characteristics in patients with chronic systemic inflammation. Muscle Nerve 46(2):204–209. https://doi.org/10.1002/mus.23291

    Article  PubMed  Google Scholar 

  22. Nishina N, Kaneko Y, Kameda H, Kuwana M, Takeuchi T (2013) Reduction of plasma IL-6 but not TNF-alpha by methotrexate in patients with early rheumatoid arthritis: a potential biomarker for radiographic progression. Clin Rheumatol 32(11):1661–1666. https://doi.org/10.1007/s10067-013-2309-0

    Article  PubMed  Google Scholar 

  23. Kremer JM, Lawrence DA, Hamilton R, McInnes IB (2016) Long-term study of the impact of methotrexate on serum cytokines and lymphocyte subsets in patients with active rheumatoid arthritis: correlation with pharmacokinetic measures. RMD Open. https://doi.org/10.1136/rmdopen-2016-000287

    Article  PubMed  PubMed Central  Google Scholar 

  24. Metsios GS, Stavropoulos-Kalinoglou A, Douglas KM, Koutedakis Y, Nevill AM, Panoulas VF, Kita M, Kitas GD (2007) Blockade of tumour necrosis factor-alpha in rheumatoid arthritis: effects on components of rheumatoid cachexia. Rheumatology 46(12):1824–1827. https://doi.org/10.1093/rheumatology/kem291

    Article  PubMed  CAS  Google Scholar 

  25. Bearne LM, Scott DL, Hurley MV (2002) Exercise can reverse quadriceps sensorimotor dysfunction that is associated with rheumatoid arthritis without exacerbating disease activity. Rheumatology 41(2):157–166

    Article  PubMed  CAS  Google Scholar 

  26. Manicourt DH, Triki R, Fukuda K, Devogelaer JP, Nagant de Deuxchaisnes C, Thonar EJ (1993) Levels of circulating tumor necrosis factor alpha and interleukin-6 in patients with rheumatoid arthritis. Relationship to serum levels of hyaluronan and antigenic keratan sulfate. Arthritis Rheum 36(4):490–499

    Article  PubMed  CAS  Google Scholar 

  27. Schulz M, Dotzlaw H, Neeck G (2014) Ankylosing spondylitis and rheumatoid arthritis: serum levels of TNF-alpha and Its soluble receptors during the course of therapy with etanercept and infliximab. Biomed Res Int 2014:675108. https://doi.org/10.1155/2014/675108

  28. Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP (2013) Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 45(10):2163–2172. https://doi.org/10.1016/j.biocel.2013.05.036

    Article  PubMed  CAS  Google Scholar 

  29. Mackey AL, Rasmussen LK, Kadi F, Schjerling P, Helmark IC, Ponsot E, Aagaard P, Durigan JL, Kjaer M (2016) Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. FASEB J Off Publ Fed Am Soc Exp Biol 30(6):2266–2281. https://doi.org/10.1096/fj.201500198R

    Article  CAS  Google Scholar 

  30. Mikkelsen UR, Langberg H, Helmark IC, Skovgaard D, Andersen LL, Kjaer M, Mackey AL (2009) Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol (Bethesda, Md 1985) 107 (5):1600–1611. https://doi.org/10.1152/japplphysiol.00707.2009

    Article  CAS  Google Scholar 

  31. Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Dossing S, Kadi F, Koskinen SO, Jensen CH, Schroder HD, Langberg H (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol (Bethesda, Md 1985) 103(2):425–431. https://doi.org/10.1152/japplphysiol.00157.2007

    Article  CAS  Google Scholar 

  32. Verdijk LB, Gleeson BG, Jonkers RA, Meijer K, Savelberg HH, Dendale P, van Loon LJ (2009) Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol Ser A Biol Sci Med Sci 64(3):332–339. https://doi.org/10.1093/gerona/gln050

    Article  CAS  Google Scholar 

  33. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15(12):666–673. https://doi.org/10.1016/j.tcb.2005.10.007

    Article  PubMed  CAS  Google Scholar 

  34. Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, van Loon LJ (2013) The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol 48(5):492–498. https://doi.org/10.1016/j.exger.2013.02.012

    Article  PubMed  Google Scholar 

  35. Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ (2014) Satellite cells in human skeletal muscle; from birth to old age. Age (Dordrecht Netherlands) 36(2):545–547. https://doi.org/10.1007/s11357-013-9583-2

    Article  CAS  Google Scholar 

  36. Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM (2006) Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291(5):E937-946. https://doi.org/10.1152/ajpendo.00190.2006

    Article  CAS  Google Scholar 

  37. Wroblewski R, Nordemar R (1975) Ultrastructural and histochemical studies of muscle in rheumatoid arthritis. Scand J Rheumatol 4(4):197–204

    Article  PubMed  CAS  Google Scholar 

  38. Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7(1):33–44. https://doi.org/10.1016/j.cmet.2007.11.011

    Article  PubMed  CAS  Google Scholar 

  39. Gundersen K (2016) Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J Exp Biol 219(Pt 2):235–242. https://doi.org/10.1242/jeb.124495

    Article  PubMed  Google Scholar 

  40. Balage M, Averous J, Rémond D, Bos C, Pujos-Guillot E, Papet I, Mosoni L, Combaret L, Dardevet D (2010) Presence of low-grade inflammation impaired postprandial stimulation of muscle protein synthesis in old rats. J Nutr Biochem 21(4):325–331. https://doi.org/10.1016/j.jnutbio.2009.01.005

    Article  PubMed  CAS  Google Scholar 

  41. Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C, Peyron MA, Combaret L, Dardevet D (2009) Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J Physiol 587(Pt 22):5483–5492. https://doi.org/10.1113/jphysiol.2009.178319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lang CH, Frost RA, Nairn AC, MacLean DA, Vary TC (2002) TNF-α impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metab 282(2):E336-E347. https://doi.org/10.1152/ajpendo.00366.2001

    Article  Google Scholar 

  43. Dideriksen K, Reitelseder S, Malmgaard-Clausen NM, Bechshoeft R, Petersen RK, Mikkelsen UR, Holm L (2016) No effect of anti-inflammatory medication on postprandial and postexercise muscle protein synthesis in elderly men with slightly elevated systemic inflammation. Exp Gerontol 83:120–129. https://doi.org/10.1016/j.exger.2016.07.016

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants in the study and Simon Riis for analyzing the MRI data.

Funding

The study was funded by The Danish Medical Research Council (10-094021) and the Nordea Foundation (Center for Healthy Aging).

Author information

Authors and Affiliations

Authors

Contributions

Conceived the study: RJB, JF, MK, URM. Participated in the study design: RJB, JF, MK, URM. Carried out the study: RJB, JF, KV, URM. Data acquisition: RJB, JF. Data analyses and interpretation: RJB, JF, KV, URM. Wrote the manuscript: RJB, JF, KV, URM. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Rasmus Jentoft Boutrup.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

The study was approved by The Research Ethics Committees of the Capital Region of Denmark (H-4-2011-028) and conformed to the Declaration of Helsinki.

Informed consent

Written informed consent was obtained from all subjects before participation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutrup, R.J., Farup, J., Vissing, K. et al. Skeletal muscle stem cell characteristics and myonuclei content in patients with rheumatoid arthritis: a cross-sectional study. Rheumatol Int 38, 1031–1041 (2018). https://doi.org/10.1007/s00296-018-4028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-018-4028-y

Keywords

Navigation