The role of artificial intelligence in the battle against antimicrobial-resistant bacteria

Abstract

Antimicrobial resistance (AMR) in bacteria is a global health crisis due to the rapid emergence of multidrug-resistant bacteria and the lengthy development of new antimicrobials. In light of this, artificial intelligence in the form of machine learning has been viewed as a potential counter to delay the spread of AMR. With the aid of AI, there are possibilities to predict and identify AMR in bacteria efficiently. Furthermore, a combination of machine learning algorithms and lab testing can help to accelerate the process of discovering new antimicrobials. To date, many machine learning algorithms for antimicrobial-resistance discovery had been created and vigorously validated. Most of these algorithms produced accurate results and outperformed the traditional methods which relied on sequence comparison within a database. This mini-review will provide an updated overview of antimicrobial design workflow using the latest machine-learning antimicrobial discovery algorithms in the last 5 years. With this review, we hope to improve upon the current AMR identification and antimicrobial development techniques by introducing the use of AI into the mix, including how the algorithms could be made more effective.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alcock BP et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48:D517–D525

    CAS  Article  Google Scholar 

  2. Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf A (2020) A systematic review on supervised and unsupervised machine learning algorithms for data science. Springer International Publishing, Berlin, pp 3–21. https://doi.org/10.1007/978-3-030-22475-2_1

    Google Scholar 

  3. Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L (2018) DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6:23

    Article  Google Scholar 

  4. Battersby AJ, Khara J, Wright VJ, Levy O, Kampmann B (2016) Antimicrobial proteins and peptides in early life: ontogeny and translational opportunities. Front Immunol. https://doi.org/10.3389/fimmu.2016.00309

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bello-López JM, Cabrero-Martínez OA, Ibáñez-Cervantes G, Hernández-Cortez C, Pelcastre-Rodríguez LI, Gonzalez-Avila LU, Castro-Escarpulli G (2019) Horizontal gene transfer and its association with antibiotic resistance in the genus Aeromonas spp. Microorganisms 7:363

    Article  Google Scholar 

  6. Bradley P et al (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063. https://doi.org/10.1038/ncomms10063

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN, Cândido ES, Franco OL (2020) Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front Microbiol 10:3097–3097. https://doi.org/10.3389/fmicb.2019.03097

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chowdhury AS, Call DR, Broschat SL (2019) Antimicrobial resistance prediction for Gram-negative bacteria via game theory-based feature evaluation. Sci Rep 9:14487. https://doi.org/10.1038/s41598-019-50686-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Davis JJ et al (2016) Antimicrobial resistance prediction in PATRIC and RAST. Sci Rep 6:27930. https://doi.org/10.1038/srep27930

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Dey A (2016) Machine learning algorithms: a review international. J Comput Sci Inf Technol 7:1174–1179

    Google Scholar 

  11. Doster E et al (2020) MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res 48:D561–D569

    CAS  Article  Google Scholar 

  12. Drouin A et al (2016) Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC Genomics 17:754. https://doi.org/10.1186/s12864-016-2889-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Her H-L, Wu Y-W (2018) A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics 34:i89–i95. https://doi.org/10.1093/bioinformatics/bty276

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Hughes D, Karlén A (2014) Discovery and preclinical development of new antibiotics. Ups J Med Sci 119:162–169. https://doi.org/10.3109/03009734.2014.896437

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hyun JC, Kavvas ES, Monk JM, Palsson BO (2020) Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLOS Comput Biol 16:e1007608. https://doi.org/10.1371/journal.pcbi.1007608

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kavvas ES et al (2018) Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat Commun 9:4306. https://doi.org/10.1038/s41467-018-06634-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Kim J et al (2020) VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLOS Comput Biol 16:e1007511. https://doi.org/10.1371/journal.pcbi.1007511

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Kurczab R, Smusz S, Bojarski AJ (2014) The influence of negative training set size on machine learning-based virtual screening. J Cheminform 6:32. https://doi.org/10.1186/1758-2946-6-32

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GC (2017) What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 7:20160153

    Article  Google Scholar 

  20. Lingle JI, Santerre J (2019) Using Machine Learning for Antimicrobial Resistant DNA Identification. SMU Data Sci Rev 2:12

  21. Macesic N, Polubriaginof F, Tatonetti NP (2017) Machine learning: novel bioinformatics approaches for combating antimicrobial resistance. Curr Opin Infect Dis 30:511–517. https://doi.org/10.1097/qco.0000000000000406

    Article  PubMed  Google Scholar 

  22. Maritan M et al (2020) Inherent biophysical properties modulate the toxicity of soluble amyloidogenic light chains. J Mol Biol 432:845–860. https://doi.org/10.1016/j.jmb.2019.12.015

    CAS  Article  PubMed  Google Scholar 

  23. Mih N et al (2018) ssbio: a Python framework for structural systems biology. Bioinformatics 34:2155–2157. https://doi.org/10.1093/bioinformatics/bty077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Nguyen M et al (2018) Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Sci Rep 8:421. https://doi.org/10.1038/s41598-017-18972-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Nguyen M et al (2019) Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J Clin Microbiol 57:e01260-e11218. https://doi.org/10.1128/jcm.01260-18

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Rodloff A, Bauer T, Ewig S, Kujath P, Müller E (2008) Susceptible, intermediate, and resistant—the intensity of antibiotic action. Dtsch Arztebl Int 105:657–662. https://doi.org/10.3238/arztebl.2008.0657

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rondón-Villarreal P, Sierra DA, Torres R (2014) Machine learning in the rational design of antimicrobial peptides. Curr Comput Aided Drug Des 10:183–190

    Article  Google Scholar 

  28. Ruppé E et al (2019) Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat Microbiol 4:112–123. https://doi.org/10.1038/s41564-018-0292-6

    CAS  Article  PubMed  Google Scholar 

  29. Sabtu N, Enoch D, Brown N (2015) Antibiotic resistance: what, why, where, when and how? Br Med Bull 116:105–113

    CAS  PubMed  Google Scholar 

  30. Sherman RM, Salzberg SL (2020) Pan-genomics in the human genome era. Nat Rev Genet 21:243–254. https://doi.org/10.1038/s41576-020-0210-7

    CAS  Article  PubMed  Google Scholar 

  31. Stokes JM et al (2020) A deep learning approach to antibiotic discovery. Cell 180:688-702.e613. https://doi.org/10.1016/j.cell.2020.01.021

    CAS  Article  PubMed  Google Scholar 

  32. Suller MTE, Russell AD (2000) Triclosan and antibiotic resistance in Staphylococcus aureus. J Antimicrob Chemother 46:11–18. https://doi.org/10.1093/jac/46.1.11

    CAS  Article  PubMed  Google Scholar 

  33. Suzuki S, Ogo M, Koike T, Takada H, Newman B (2015) Sulfonamide and tetracycline resistance genes in total- and culturable-bacterial assemblages in South African aquatic environments. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00796

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ventola CL (2015) The antibiotic resistance crisis part 1: causes and threats. Pharm Ther 40:277–283

    Google Scholar 

  35. Wade W (2002) Unculturable bacteria—the uncharacterized organisms that cause oral infections. J R Soc Med 95:81–83. https://doi.org/10.1258/jrsm.95.2.81

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Zeng X, Yang Q, Qiao S (2016) Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci 17:603. https://doi.org/10.3390/ijms17050603

    CAS  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tropical Medicine and Biology Multidisciplinary Platform and School of Science, Monash University Malaysia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hock Siew Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Michael Polymenis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lau, H.J., Lim, C.H., Foo, S.C. et al. The role of artificial intelligence in the battle against antimicrobial-resistant bacteria. Curr Genet (2021). https://doi.org/10.1007/s00294-021-01156-5

Download citation

Keywords

  • AI algorithms
  • Antimicrobial-resistance identification
  • Antimicrobial design
  • Antimicrobial discovery
  • Halicin