Skip to main content
Log in

Abortive activity of Topoisomerase I: a challenge for genome integrity?

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Single-strand breaks (SSB) are discontinuities in one strand of the DNA double helix and are the most common type of damages that arise in cells. SSBs arise mainly from direct attack by intracellular metabolites, however, also essential nuclear processes generate SSBs as intermediates. During the catalytic cycle of DNA topoisomerase I (Top1) a SSB is generated, which is normally transient and rapidly resealed by the enzyme. However, several situations can stabilize a Top1-generated SSB, and this poses the risk of converting the SSB into a double strand break (DSB) if encountered by the replication machinery. A DSB is a more serious treat for cells as it can fuel chromosomal rearrangements and thus jeopardize genome stability and cause cells to become cancerous. In this perspective, we discuss the cellular consequences of Top1-generated damage during DNA replication with focus on the differences between endogenous Top1-generated damage and Top1 damage generated due to the use of the drug camptothecin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413

    Article  CAS  PubMed  Google Scholar 

  • Chung WH, Zhu Z, Papusha A, Malkova A, Ira G (2010) Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet 6:e1000948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, Mathur R, Chabes A, Malkova A (2011) Break-induced replication is highly inaccurate. PLoS Biol 9:e1000594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen KP, Bjergbaek L (2018) Using the Flp recombinase to induce site-specific protein-DNA nicks. Methods Enzymol 601:1–25

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen KP, Nielsen KO, Lovschal KV, Rodgaard M, Andersen AH, Bjergbaek L (2019) Minimal resection takes place during break-induced replication repair of collapsed replication forks and is controlled by strand invasion. Cell Rep 26(836–844):e833

    Google Scholar 

  • Koster DA, Palle K, Bot ES, Bjornsti MA, Dekker NH (2007) Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448:213–217

    Article  CAS  PubMed  Google Scholar 

  • Lesher DT, Pommier Y, Stewart L, Redinbo MR (2002) 8-Oxoguanine rearranges the active site of human topoisomerase I. Proc Natl Acad Sci USA 99:12102–12107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CP, Ban Y, Lyu YL, Liu LF (2009) Proteasome-dependent processing of topoisomerase I-DNA adducts into DNA double strand breaks at arrested replication forks. J Biol Chem 284:28084–28092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahendrawada L, Rai R, Kothiwal D, Laloraya S (2017) Interplay between Top1 and Mms21/Nse2 mediated sumoylation in stable maintenance of long chromosomes. Curr Genet 63:627–645

    Article  CAS  PubMed  Google Scholar 

  • Nielsen I, Bentsen IB, Lisby M, Hansen S, Mundbjerg K, Andersen AH, Bjergbaek L (2009) A Flp-nick system to study repair of a single protein-bound nick in vivo. Nat Methods 6:753–757

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y (2009) DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev 109:2894–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier Y, Huang SY, Gao R, Das BB, Murai J, Marchand C (2014) Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair (Amst) 19:114–129

    Article  CAS  Google Scholar 

  • Postow L, Ullsperger C, Keller RW, Bustamante C, Vologodskii AV, Cozzarelli NR (2001) Positive torsional strain causes the formation of a four-way junction at replication forks. J Biol Chem 276:2790–2796

    Article  CAS  PubMed  Google Scholar 

  • Pourquier P, Ueng LM, Kohlhagen G, Mazumder A, Gupta M, Kohn KW, Pommier Y (1997) Effects of uracil incorporation, DNA mismatches, and abasic sites on cleavage and religation activities of mammalian topoisomerase I. J Biol Chem 272:7792–7796

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Laloraya S (2017) Genetic evidence for functional interaction of Smc5/6 complex and Top1 with spatial frequency of replication origins required for maintenance of chromosome stability. Curr Genet 63:765–776

    Article  CAS  PubMed  Google Scholar 

  • Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R, Cocito A, Costanzo V, Lopes M (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19:417–423

    Article  CAS  PubMed  Google Scholar 

  • Regairaz M, Zhang YW, Fu H, Agama KK, Tata N, Agrawal S, Aladjem MI, Pommier Y (2011) Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes. J Cell Biol 195:739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y, Deem A, Ira G, Haber JE, Lobachev KS, Malkova A (2013) Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502:389–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sordet O, Khan QA, Pommier Y (2004) Apoptotic topoisomerase I-DNA complexes induced by oxygen radicals and mitochondrial dysfunction. Cell Cycle 3:1095–1097

    Article  CAS  PubMed  Google Scholar 

  • Stingele J, Schwarz MS, Bloemeke N, Wolf PG, Jentsch S (2014) A DNA-dependent protease involved in DNA-protein crosslink repair. Cell 158:327–338

    Article  CAS  PubMed  Google Scholar 

  • Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20:3977–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P, Niu H, Mayle R, Chen X, Malkova A, Sung P et al (2013) Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature 502:393–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotte Bjergbæk.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakobsen, K.P., Andersen, A.H. & Bjergbæk, L. Abortive activity of Topoisomerase I: a challenge for genome integrity?. Curr Genet 65, 1141–1144 (2019). https://doi.org/10.1007/s00294-019-00984-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00984-w

Keywords

Navigation