Genetic background effects in quantitative genetics: gene-by-system interactions

  • Maria Sardi
  • Audrey P. Gasch


Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype–phenotype relationships across individuals.


Genetic architecture Epistasis Quantitative genetics Biofuels Stress tolerance 



We thank Bret Payseur for useful comments on the manuscript. This work was supported by a grant from the Department of Energy to the Great Lakes Bioenergy Research Center (DE-SC0018409).


  1. Berry DB, Guan Q, Hose J, Haroon S, Gebbia M, Heisler LE, Nislow C, Giaever G, Gasch AP (2011) Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. PLoS Genet 7(11):e1002353CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L (2015) Genetic interactions contribute less than additive effects to quantitative trait variation in yeast. Nat Commun 6:8712CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic Cell 169(7):1177–1186CrossRefPubMedGoogle Scholar
  4. Butland G, Babu M, Diaz-Mejia JJ, Bohdana F, Phanse S, Gold B, Yang W, Li J, Gagarinova AG, Pogoutse O, Mori H, Wanner BL, Lo H, Wasniewski J, Christopolous C, Ali M, Venn P, Safavi-Naini A, Sourour N, Caron S, Choi JY, Laigle L, Nazarians-Armavil A, Deshpande A, Joe S, Datsenko KA, Yamamoto N, Andrews BJ, Boone C, Ding H, Sheikh B, Moreno-Hagelseib G, Greenblatt JF, Emili A (2008) eSGA: E. coli synthetic genetic array analysis. Nat Methods 5(9):789–795CrossRefPubMedGoogle Scholar
  5. Byrne AB, Weirauch MT, Wong V, Koeva M, Dixon SJ, Stuart JM, Roy PJ (2007) A global analysis of genetic interactions in Caenorhabditis elegans. J Biol 6(3):8CrossRefPubMedPubMedCentralGoogle Scholar
  6. Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15(1):34–48CrossRefPubMedGoogle Scholar
  7. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010). The genetic landscape of a cell. Science. 327(5964):425–431CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ehrenreich IM (2017) Epistasis: searching for interacting genetic variants using crosses. Genetics 206(2):531–535CrossRefPubMedPubMedCentralGoogle Scholar
  9. Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338(6214):394–401CrossRefPubMedGoogle Scholar
  10. Greene CS, Penrod NM, Williams SM, Moore JH (2009) Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One 4(6):e5639CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4(2):e1000008CrossRefPubMedPubMedCentralGoogle Scholar
  12. Horn T, Sandmann T, Fischer B, Axelsson E, Huber W, Boutros M (2011) Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat Methods 8(4):341–346CrossRefPubMedGoogle Scholar
  13. Hou J, Schacherer J (2016) Negative epistasis: a route to intraspecific reproductive isolation in yeast? Curr Genet 62(1):25–29CrossRefPubMedGoogle Scholar
  14. Huang W, Mackay TF (2016) The genetic architecture of quantitative traits cannot be inferred from variance component analysis. PLoS Genet 12(11):e1006421CrossRefPubMedPubMedCentralGoogle Scholar
  15. Huang W, Richards S, Carbone MA, Zhu D, Anholt RR, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM, Warner CB, Blankenburg K, Han Y, Javaid M, Jayaseelan J, Jhangiani SN, Muzny D, Ongeri F, Perales L, Wu YQ, Zhang Y, Zou X, Stone EA, Gibbs RA, Mackay TF (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci USA 109(39):15553–15559CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38(8):896–903CrossRefPubMedGoogle Scholar
  17. Leiserson MD, Eldridge JV, Ramachandran S, Raphael BJ (2013). Network analysis of GWAS data. Curr Opin Genet Dev 23(6):602–610CrossRefPubMedGoogle Scholar
  18. Mackay TF (2014) Epistasis and quantitative traits: using model organisms to study gene–gene interactions. Nat Rev Genet 15(1):22–33CrossRefPubMedGoogle Scholar
  19. Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171(4):2013–2027CrossRefPubMedPubMedCentralGoogle Scholar
  20. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753CrossRefPubMedPubMedCentralGoogle Scholar
  21. Monnahan PJ, Kelly JK (2015) epistasis is a major determinant of the additive genetic variance in Mimulus guttatus. PLoS Genet 11(5):e1005201CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moore JH, Williams SM (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85(3):309–320CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rand DM (2017) Fishing for adaptive epistasis using mitonuclear interactions. PLoS Genet 13(3):e1006662CrossRefPubMedPubMedCentralGoogle Scholar
  24. Roguev A, Wiren M, Weissman JS, Krogan NJ (2007) High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nat Methods 4(10):861–866CrossRefPubMedGoogle Scholar
  25. Sackton TB, Hartl DL (2016) Genotypic context and epistasis in individuals and populations. Cell 166(2):279–287CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sardi M, Gasch AP (2017). Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering. FEMS Yeast Res 17(5):1–10CrossRefGoogle Scholar
  27. Sardi M, Rovinskiy N, Zhang Y, Gasch AP (2016) Leveraging genetic-background effects in Saccharomyces cerevisiae to improve lignocellulosic hydrolysate tolerance. Appl Environ Microbiol 82(19):5838–5849CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sardi M, Paithane V, Place M, Robinson E, Hose J, Wohlbach DJ, Gasch AP (2018) Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance. PLoS Genet 14(2):e1007217CrossRefPubMedPubMedCentralGoogle Scholar
  29. Shao H, Burrage LC, Sinasac DS, Hill AE, Ernest SR, O’Brien W, Courtland HW, Jepsen KJ, Kirby A, Kulbokas EJ, Daly MJ, Broman KW, Lander ES, Nadeau JH (2008) Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc Natl Acad Sci USA 105(50):19910–19914CrossRefPubMedPubMedCentralGoogle Scholar
  30. Snoek T, Verstrepen KJ, Voordeckers K (2016) How do yeast cells become tolerant to high ethanol concentrations? Curr Genet 62(3):475–480CrossRefPubMedGoogle Scholar
  31. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364–2368CrossRefPubMedGoogle Scholar
  32. Typas A, Nichols RJ, Siegele DA, Shales M, Collins SR, Lim B, Braberg H, Yamamoto N, Takeuchi R, Wanner BL, Mori H, Weissman JS, Krogan NJ, Gross CA (2008) High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods 5(9):781–787CrossRefPubMedPubMedCentralGoogle Scholar
  33. Watari J, Kudo M, Nishikwa N, Kamimura M (1990) Construction of flocculent yeast cells (Saccharomyces cerevisiae) by mating or protoplast fusion using a yeast cell containing the flocculation gene FL05. Agric Biol Chem 54(7):1677–1681Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Great Lakes Bioenergy Research CenterUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Laboratory of GeneticsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Cargill, IncorporatedMinneapolisUSA

Personalised recommendations