Advertisement

Current Genetics

, Volume 64, Issue 4, pp 789–794 | Cite as

R-loops: targets for nuclease cleavage and repeat instability

  • Catherine H. Freudenreich
Review

Abstract

R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington’s disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392–E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1–Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392–E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.

Keywords

R-loop Trinucleotide repeat instability Chromosome fragility Cytosine deamination Base excision repair (BER) MutLγ (Mlh1–Mlh3) 

Notes

Acknowledgements

Thanks to Xiaofeng Allen Su for help with the figure. The author’s research is supported by the National Science Foundation (MCB1330743) and the National Institute of Health (GM122880 and GM105473).

References

  1. Belotserkovskii BP, Liu R, Tornaletti S, Krasilnikova MM, Mirkin SM, Hanawalt PC (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci USA 107:12816–12821CrossRefPubMedGoogle Scholar
  2. Belotserkovskii BP, Mirkin SM, Hanawalt PC (2013) DNA sequences that interfere with transcription: implications for genome function and stability. Chem Rev 113:8620–8637CrossRefPubMedGoogle Scholar
  3. Brambati A, Colosio A, Zardoni L, Galanti L, Liberi G (2015) Replication and transcription on a collision course: eukaryotic regulation mechanisms and implications for DNA stability. Front Genet 6:166CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bregenhorn S, Kallenberger L, Artola-Boran M, Pena-Diaz J, Jiricny J (2016) Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination. Nucleic Acids Res 44:2691–2705CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chan YA, Aristizabal MJ, Lu PY, Luo Z, Hamza A, Kobor MS, Stirling PC, Hieter P (2014) Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet 10:e1004288CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chedin F (2016) Nascent connections: R-loops and chromatin patterning. Trends Genet: TIG 32:828–838CrossRefPubMedGoogle Scholar
  7. Ditch S, Sammarco MC, Banerjee A, Grabczyk E (2009) Progressive GAA.TTC repeat expansion in human cell lines. PLoS Genet 5:e1000704CrossRefPubMedPubMedCentralGoogle Scholar
  8. Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N (2004) Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 18:1618–1629CrossRefPubMedPubMedCentralGoogle Scholar
  9. Entezam A, Lokanga AR, Le W, Hoffman G, Usdin K (2010) Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model. Hum Mutat 31:611–616PubMedPubMedCentralGoogle Scholar
  10. Flores-Rozas H, Kolodner RD (1998) The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci USA 95:12404–12409CrossRefPubMedGoogle Scholar
  11. Grabczyk E, Mancuso M, Sammarco MC (2007) A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 35:5351–5359CrossRefPubMedPubMedCentralGoogle Scholar
  12. Groh M, Lufino MM, Wade-Martins R, Gromak N (2014) R-loops associated with triplet repeat expansions promote gene silencing in friedreich ataxia and fragile X syndrome. PLoS Genet 10:e1004318CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guikema JE, Linehan EK, Tsuchimoto D, Nakabeppu Y, Strauss PR, Stavnezer J, Schrader CE (2007) APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med 204:3017–3026CrossRefPubMedPubMedCentralGoogle Scholar
  14. Keogh N, Chan KY, Li GM, Lahue RS (2017) MutSbeta abundance and Msh3 ATP hydrolysis activity are important drivers of CTG*CAG repeat expansions. Nucleic Acids Res 45:10068–10078CrossRefPubMedPubMedCentralGoogle Scholar
  15. Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F (2014) Transcript-RNA-templated DNA recombination and repair. Nature 515:436–439CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kim N, Jinks-Robertson S (2011) Guanine repeat-containing sequences confer transcription-dependent instability in an orientation-specific manner in yeast. DNA Repair 10:953–960CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kim JC, Harris ST, Dinter T, Shah KA, Mirkin SM (2017) The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)n repeats. Nat Struct Mol Biol 24:55–60CrossRefPubMedGoogle Scholar
  18. Kovtun IV, Liu Y, Bjoras M, Klungland A, Wilson SH, McMurray CT (2007) OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447:447–452CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lai Y, Budworth H, Beaver JM, Chan NL, Zhang Z, McMurray CT, Liu Y (2016) Crosstalk between MSH2–MSH3 and polbeta promotes trinucleotide repeat expansion during base excision repair. Nat Commun 7:12465CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lee JM, Chao WV, Vonsattel MJ, Pinto JP, Lucente RM, Abu-Elneel D, Ramos K, Mysore EM, Gillis JS, MacDonald T, Gusella ME, Harold JF, Stone D, Escott-Price TC, Han V, Vedernikov J, Holmans A, Jones P, Kwak L, Mahmoudi S, Orth M, Landwehrmeyer M, Paulsen GB, Dorsey JS, Shoulson ER, Myers IRH (2015) Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 162:516–526CrossRefGoogle Scholar
  21. Lee JM, Chao MJ, Harold D, Abu Elneel K, Gillis T, Holmans P, Jones L, Orth M, Myers RH, Kwak S et al (2017) A modifier of Huntington’s disease onset at the MLH1 locus. Hum Mol Genet 26:3859–3867CrossRefPubMedGoogle Scholar
  22. Lin Y, Wilson JH (2007) Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol Cell Biol 27:6209–6217CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lin Y, Wilson JH (2012) Nucleotide excision repair, mismatch repair, and R-loops modulate convergent transcription-induced cell death and repeat instability. PloS one 7:e46807CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lin Y, Dion V, Wilson JH (2006) Transcription promotes contraction of CAG repeat tracts in human cells. Nat Struct Mol Biol 13:179–180CrossRefPubMedGoogle Scholar
  25. Lin Y, Dent SY, Wilson JH, Wells RD, Napierala M (2010) R loops stimulate genetic instability of CTG.CAG repeats. Proc Natl Acad Sci USA 107:692–697CrossRefPubMedGoogle Scholar
  26. Liu Y, Wilson SH (2012) DNA base excision repair: a mechanism of trinucleotide repeat expansion. Trends Biochem Sci 37:162–172CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lokanga RA, Senejani AG, Sweasy JB, Usdin K (2015) Heterozygosity for a hypomorphic Polbeta mutation reduces the expansion frequency in a mouse model of the Fragile X-related disorders. PLoS Genet 11:e1005181CrossRefPubMedPubMedCentralGoogle Scholar
  28. Loomis EW, Sanz LA, Chedin F, Hagerman PJ (2014) Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 10:e1004294CrossRefPubMedPubMedCentralGoogle Scholar
  29. Maizels N, Gray LT (2013) The G4 genome. PLoS Genet 9:e1003468CrossRefPubMedPubMedCentralGoogle Scholar
  30. Manhart CM, Ni X, White MA, Ortega J, Surtees JA, Alani E (2017) The mismatch repair and meiotic recombination endonuclease Mlh1–Mlh3 is activated by polymer formation and can cleave DNA substrates in trans. PLoS Biol 15:e2001164CrossRefPubMedPubMedCentralGoogle Scholar
  31. McGinty RJ, Puleo F, Aksenova AY, Hisey JA, Shishkin AA, Pearson EL, Wang ET, Housman DE, Moore C, Mirkin SM (2017a) A defective mRNA cleavage and polyadenylation complex facilitates expansions of transcribed (GAA)n repeats associated with Friedreich’s ataxia. Cell Rep 20:2490–2500CrossRefPubMedPubMedCentralGoogle Scholar
  32. McGinty RJ, Rubinstein RG, Neil AJ, Dominska M, Kiktev D, Petes TD, Mirkin SM (2017b) Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Res 27(12):2072–2082CrossRefPubMedPubMedCentralGoogle Scholar
  33. McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11:786–799CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mollersen L, Rowe AD, Illuzzi JL, Hildrestrand GA, Gerhold KJ, Tveteras L, Bjolgerud A, Wilson DM, 3rd, Bjoras M, Klungland A (2012) Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice. Hum Mol Genet 21, 4939–4947CrossRefPubMedPubMedCentralGoogle Scholar
  35. Morales F, Vasquez M, Santamaria C, Cuenca P, Corrales E, Monckton DG (2016) A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients. DNA Repair 40:57–66CrossRefPubMedGoogle Scholar
  36. Moss DJH et al (2017) Identification of genetic variants associated with Huntington’s disease progression: a genome-wide association study. Lancet Neurol 16:701–711CrossRefGoogle Scholar
  37. Oestergaard VH, Lisby M (2017) Transcription-replication conflicts at chromosomal fragile sites-consequences in M phase and beyond. Chromosoma 126:213–222CrossRefPubMedGoogle Scholar
  38. Pinto RM, Dragileva E, Kirby A, Lloret A, Lopez E, St Claire J, Panigrahi GB, Hou C, Holloway K, Gillis T et al (2013) Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington’s disease mice: genome-wide and candidate approaches. PLoS Genet 9:e1003930CrossRefPubMedPubMedCentralGoogle Scholar
  39. Polleys EJ, House NCM, Freudenreich CH (2017) Role of recombination and replication fork restart in repeat instability. DNA Repair 56:156–165CrossRefPubMedPubMedCentralGoogle Scholar
  40. Polyzos AA, McMurray CT (2017) Close encounters: Moving along bumps, breaks, and bubbles on expanded trinucleotide tracts. DNA Repair 56:144–155CrossRefPubMedPubMedCentralGoogle Scholar
  41. Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez-Marin A, Castro MR, Ayala-Pena S, McMurray CT (2016) Mitochondrial targeting of XJB-5–131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet 25:1792–1802CrossRefPubMedPubMedCentralGoogle Scholar
  42. Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H (2017) AID recognizes structured DNA for class switch recombination. Mol Cell 67:361–373 e364CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ranjha L, Anand R, Cejka P (2014) The Saccharomyces cerevisiae Mlh1–Mlh3 heterodimer is an endonuclease that preferentially binds to Holliday junctions. J Biol Chem 289:5674–5686CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ratmeyer L, Vinayak R, Zhong YY, Zon G, Wilson WD (1994) Sequence specific thermodynamic and structural properties for DNA.RNA duplexes. Biochemistry 33:5298–5304CrossRefPubMedGoogle Scholar
  45. Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M, Edamura N, Wang K, Y.H., and Pearson CE (2011) Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 39:1749–1762CrossRefPubMedGoogle Scholar
  46. Reddy K, Schmidt MH, Geist JM, Thakkar NP, Panigrahi GB, Wang YH, Pearson CE (2014) Processing of double-R-loops in (CAG).(CTG) and C9orf72 (GGGGCC).(GGCCCC) repeats causes instability. Nucleic Acids Res 42:10473–10487CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rindler PM, Bidichandani SI (2011) Role of transcript and interplay between transcription and replication in triplet-repeat instability in mammalian cells. Nucleic Acids Res 39:526–535CrossRefPubMedGoogle Scholar
  48. Roberts RW, Crothers DM (1992) Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258:1463–1466CrossRefPubMedGoogle Scholar
  49. Rogacheva MV, Manhart CM, Chen C, Guarne A, Surtees J, Alani E (2014) Mlh1–Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2–Msh3-stimulated endonuclease. J Biol Chem 289:5664–5673CrossRefPubMedPubMedCentralGoogle Scholar
  50. Romanova NV, Crouse GF (2013) Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast. PLoS Genet 9:e1003920CrossRefPubMedPubMedCentralGoogle Scholar
  51. Salvi JS, Mekhail K (2015) R-loops highlight the nucleus in ALS. Nucleus 6:23–29CrossRefPubMedPubMedCentralGoogle Scholar
  52. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16:583–597CrossRefPubMedGoogle Scholar
  53. Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, Ginno PA, Xu X, Chedin F (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol Cell 63:167–178CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schmidt MH, Pearson CE (2016) Disease-associated repeat instability and mismatch repair. DNA Repair 38:117–126CrossRefPubMedGoogle Scholar
  55. Schrader CE, Guikema JE, Wu X, Stavnezer J (2009) The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B Biol Sci 364:645–652CrossRefPubMedGoogle Scholar
  56. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28:1384–1396CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sollier J, Stork CT, Garcia-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56:777–785CrossRefPubMedPubMedCentralGoogle Scholar
  58. Stavnezer J, Guikema JE, Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261–292CrossRefPubMedPubMedCentralGoogle Scholar
  59. Su XA, Freudenreich CH (2017) Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 114:E8392–E8401CrossRefPubMedGoogle Scholar
  60. Usdin K, House NC, Freudenreich CH (2015) Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 50(2):142–167CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wahba L, Gore SK, Koshland D (2013) The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. eLife 2:e00505CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D (2016) S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 30:1327–1338CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyTufts UniversityMedfordUSA
  2. 2.Program in GeneticsTufts UniversityBostonUSA

Personalised recommendations