Skip to main content
Log in

Fibrotischer Lungenparenchymumbau nach Lungen- und Stammzelltransplantation

Fibrotic remodeling of the lung following lung and stem-cell transplantation

  • Schwerpunkt: Nicht-neoplastische Lungenerkrankungen
  • Published:
Der Pathologe Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 22 January 2021

This article has been updated

Zusammenfassung

Wenngleich die Sterblichkeit von Patienten nach Lungen- oder Stammzelltransplantation deutlich verbessert werden konnte, weisen beide Therapieverfahren weiterhin eine hohe 5‑Jahres-Mortalität auf. Dies ist Folge insbesondere von Lungenerkrankungen als Ausdruck einer chronischen Alloimmunreaktion. Morphologisch stehen fibrosierende Parenchymveränderungen mit Umbau der Atemwege im Sinne einer Bronchiolitis obliterans oder Umbau des Alveolarparenchyms im Sinne einer alveolären Fibroelastose im Vordergrund. Molekulare Studien dokumentieren viele Parallelen, jedoch auch distinkte Unterschiede zwischen diesen klinisch und morphologisch deutlich divergierenden Entitäten. Es zeigt sich erneut, dass histomorphologisch abgrenzbare Muster des fibrotischen Parenchymumbaus für sich genommen unspezifisch, in Zusammenschau mit den klinisch-radiologischen Befunden jedoch bestimmten Entitäten mit zum Teil deutlich unterschiedlichen Prognosen und Therapien zuordenbar sind.

Fortschritte des molekularen Verständnisses dieser Läsionen sind Grundlage für eine frühe Vorhersage und exaktere Diagnose irreversibler fibrotischer Veränderungen der Lunge und für die mögliche Entwicklung bisher fehlender Therapieoptionen

Abstract

Transplantation of solid organs and hematopoietic stem cells represents an important therapeutic option for a variety of end-stage pulmonary diseases, aggressive hematopoietic neoplasms, or severe immunodeficiencies. Although the overall survival following transplantation has generally improved over recent decades, long-time survival of lung and stem-cell transplant recipients is still alarmingly low with an average 5‑year survival rate of only 50–60%. Chronic allo-immunoreactions in general and pulmonary allo-immunoreactions with subsequent fibrosis in particular are major reasons for this poor outcome. Comparable patterns of fibrotic lung remodeling are observed following both lung and hematopoietic stem-cell transplantation. Besides the meanwhile well-established obliterative and functionally obstructive remodeling of the small airways – obliterative bronchiolitis – a specific restrictive subform of fibrosis, namely alveolar fibroelastosis, has been identified. Despite their crucial impact on patient outcome, both entities can be very challenging to detect by conventional histopathological analysis. Their underlying mechanisms are considered overreaching aberrant repair attempts to acute lung injuries with overactivation of (myo-) fibroblasts and excessive and irreversible deposition of extracellular matrix. Of note, the underlying molecular mechanisms are widely divergent between these two morphological entities and are independent of the underlying clinical setting.

Further comprehensive investigations of these fibrotic alterations are key to the development of much-needed predictive diagnostics and curative concepts, considering the high mortality of pulmonary fibrosis following transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Change history

  • 22 January 2021

    Ein Erratum zu dieser Publikation wurde veröffentlicht: <ExternalRef><RefSource>https://doi.org/10.1007/s00292-020-00907-4</RefSource><RefTarget Address="10.1007/s00292-020-00907-4" TargetType="DOI"/></ExternalRef>

Abbreviations

AFE:

Alveoläre Fibroelastose

AFOP:

Akute fibrinöse und organisierende Pneumonie

ARDS:

„Acute respiratory distress syndrome“

ATP:

Adenosintriphosphat

BMP1, 2, 4:

„Bone morphogenic protein 1, 2, 4“

BO:

Bronchiolitis obliterans

BOS:

Bronchiolitis-obliterans-Syndrom

CCL5:

„CC-chemokine ligand 5“

CF:

„Cystic fibrosis“

CLAD:

„Chronic lung allograft dysfunction“

COPD:

„Chronic obstructive pulmonary disease“

CXCL-12:

CXC-Motiv-Chemokin 12

CXCR 2, 4:

CXC-Motiv-Chemokinrezeptor 2, 4

DAD:

„Diffuse alveolar damage“

DIP:

„Desquamative interstitial pneumonia“

EMT:

„Epithelial mesenchymale transition“

EZM:

Extrazelluläre Matrix

GvHD:

„Graft versus host disease“

IIP:

„Idiopathic interstitial pneumonia“

IL‑6:

Interleukin 6

IL‑8:

Interleukin 8

IL-17:

Interleukin 17

IPF:

„Idiopathic pulmonary fibrosis“

IPPFE:

„Idiopathic pleuroparenchymal fibroelastosis“

IFN‑γ:

Interferon-gamma

LuTx:

Lungentransplantation

MHC:

„Major histocompatibility complex“

MMP:

„Matrix metalloproteinases“

NK-Zellen:

Natürliche Killerzellen

NSIP:

„Nonspecific interstitial pneumonia“

oCLAD:

„Obstructive chronic lung allograft dysfunction“

OP:

„Organizing pneumonia“

PLAT:

„Tissue-type plasminogen activator“

PLAUR:

„Urokinase plasminogen activator surface receptor“

PLOD:

„Procollagen-lysine“

PPFE:

„Pleuroparenchymal fibroelastosis“

rCLAD/RAS:

„Restrictive allograft dysfunction syndrome“

SMAD1:

„Mothers against decapentaplegic homolog 1“

TGF β:

„Transforming growth factor β“

THBS1:

Thrombospondin‑1

Tregs:

„Regulatory T‑lymphocytes“

UIP:

„Usual interstitial pneumonia“

Literatur

  1. Ackermann M, Stark H, Neubert L et al (2020) Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases. Eur Respir J. https://doi.org/10.1183/13993003.00933-2019

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alici IO, Yekeler E, Yazicioglu A et al (2015) A case of acute fibrinous and organizing pneumonia during early postoperative period after lung transplantation. Transplant Proc 47:836–840. https://doi.org/10.1016/j.transproceed.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  3. Barton LM, Duval EJ, Stroberg E et al (2020) COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol 153(6):725–733. https://doi.org/10.1093/ajcp/aqaa062

    Article  CAS  PubMed  Google Scholar 

  4. Belperio JA, Keane MP, Burdick MD et al (2005) Role of CXCR2/CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome. J Clin Invest 115:1150–1162. https://doi.org/10.1172/JCI200524233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Belperio JA, Ross DJ, Strieter RM et al (2005) Role of CXCR2 / CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome find the latest version : role of CXCR2 / CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome. J Clin Invest 115:1150–1162. https://doi.org/10.1172/JCI200524233.1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benzimra M, Calligaro GL, Glanville AR (2017) Acute rejection. J Thorac Dis 9:5440–5457. https://doi.org/10.21037/jtd.2017.11.83

    Article  PubMed  PubMed Central  Google Scholar 

  7. Borthwick LA, Parker SM, Brougham KA et al (2009) Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax 64:770–777. https://doi.org/10.1136/thx.2008.104133

    Article  CAS  PubMed  Google Scholar 

  8. Brissot E, Rialland F, Cahu X et al (2016) Improvement of overall survival after allogeneic hematopoietic stem cell transplantation for children and adolescents: a three-decade experience of a single institution. Bone Marrow Transplant 51:267–272. https://doi.org/10.1038/bmt.2015.250

    Article  CAS  PubMed  Google Scholar 

  9. Bröcker V, Länger F, Fellous TG et al (2006) Fibroblasts of recipient origin contribute to bronchiolitis obliterans in human lung transplants. Am J Respir Crit Care Med 173:1276–1282. https://doi.org/10.1164/rccm.200509-1381OC

    Article  PubMed  Google Scholar 

  10. Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16:177–192. https://doi.org/10.1038/nri.2016.4

    Article  CAS  PubMed  Google Scholar 

  11. Costa AN, Carraro RM, Nascimento ECT et al (2016) Acute fibrinoid organizing pneumonia in lung transplant: the most feared allograft dysfunction. Transplantation 100:e11–e12. https://doi.org/10.1097/TP.0000000000001088

    Article  PubMed  Google Scholar 

  12. Evers A, Atanasova S, Fuchs-Moll G et al (2015) Adaptive and innate immune responses in a rat orthotopic lung transplant model of chronic lung allograft dysfunction. Transpl Int 28:95–107. https://doi.org/10.1111/tri.12444

    Article  CAS  PubMed  Google Scholar 

  13. Farver C, Wallace WD (2018) The pathology of lung transplantation. In: Ruiz P (Hrsg) Transplantation pathology, 2. Aufl. Cambridge University Press, Cambridge, S 156–182

    Google Scholar 

  14. Izykowski N, Kuehnel M, Hussein K et al (2016) Organizing pneumonia in mice and men. J Transl Med 14:1–12. https://doi.org/10.1186/s12967-016-0933-6

    Article  CAS  Google Scholar 

  15. Jaramillo A, Fernandez FG, Kuo EY et al (2005) Immune mechanisms in the pathogenesis of bronchiolitis obliterans syndrome after lung transplantation. Pediatr Transplant 9:84–93. https://doi.org/10.1111/j.1399-3046.2004.00270.x

    Article  PubMed  Google Scholar 

  16. Jonigk D, Izykowski N, Rische J et al (2015) Molecular profiling in lung biopsies of human pulmonary allografts to predict chronic lung allograft dysfunction. Am J Pathol 185:3178–3188. https://doi.org/10.1016/j.ajpath.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  17. Jonigk D, Merk M, Hussein K et al (2011) Obliterative airway remodeling: molecular evidence for shared pathways in transplanted and native lungs. Am J Pathol 178:599–608. https://doi.org/10.1016/j.ajpath.2010.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jonigk D, Rath B, Borchert P et al (2017) Comparative analysis of morphological and molecular motifs in bronchiolitis obliterans and alveolar fibroelastosis after lung and stem cell transplantation. J Pathol Clin Res 3:17–28. https://doi.org/10.1002/cjp2.60

    Article  CAS  PubMed  Google Scholar 

  19. Kuehnel M, Maegel L, Robertus JL, Jonigk D (2017) Airway remodelling in the transplanted lung. Cell Tissue Res 367:663–675. https://doi.org/10.1007/s00441-016-2529-0

    Article  PubMed  Google Scholar 

  20. Länger F, Stark H, Braubach P et al (2018) Injury patterns in interstitial lung diseases. Pathologe 39:262–271. https://doi.org/10.1007/s00292-018-0503-1

    Article  PubMed  Google Scholar 

  21. Levy L, Huszti E, Renaud-Picard B et al (2020) Risk assessment of chronic lung allograft dysfunction phenotypes: validation and proposed refinement of the 2019 international society for heart and lung transplantation classification system. J Heart Lung Transplant 39:761–770. https://doi.org/10.1016/j.healun.2020.04.012

    Article  PubMed  Google Scholar 

  22. Matsui T, Maeda T, Kida T et al (2016) Pleuroparenchymal fibroelastosis after allogenic hematopoietic stem cell transplantation: important histological component of late-onset noninfectious pulmonary complication accompanied with recurrent pneumothorax. Int J Hematol 104:525–530. https://doi.org/10.1007/s12185-016-2038-7

    Article  CAS  PubMed  Google Scholar 

  23. Meyer KC, Raghu G, Verleden GM et al (2014) An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J 44:1479–1503. https://doi.org/10.1183/09031936.00107514

    Article  PubMed  Google Scholar 

  24. Nicod LP (2006) Mechanisms of airway obliteration after lung transplantation. Proc Am Thorac Soc 3:444–449. https://doi.org/10.1513/pats.200601-007AW

    Article  CAS  PubMed  Google Scholar 

  25. Ofek E, Sato M, Saito T et al (2013) Restrictive allograft syndrome post lung transplantation is characterized by pleuroparenchymal fibroelastosis. Mod Pathol 26:350–356. https://doi.org/10.1038/modpathol.2012.171

    Article  CAS  PubMed  Google Scholar 

  26. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887. https://doi.org/10.1016/j.cell.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  27. Rhee CK, Ha JH, Yoon JH et al (2016) Risk factor and clinical outcome of bronchiolitis obliterans syndrome after allogeneic hematopoietic stem cell transplantation. Yonsei Med J 57:365–372. https://doi.org/10.3349/ymj.2016.57.2.365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato M (2020) Bronchiolitis obliterans syndrome and restrictive allograft syndrome after lung transplantation: why are there two distinct forms of chronic lung allograft dysfunction? Ann Transl Med 8:418–418. https://doi.org/10.21037/atm.2020.02.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sato M, Hwang DM, Ohmori-Matsuda K et al (2012) Revisiting the pathologic finding of diffuse alveolar damage after lung transplantation. J Heart Lung Transplant 31:354–363. https://doi.org/10.1016/j.healun.2011.12.015

    Article  PubMed  Google Scholar 

  30. Subramanian V, Ramachandran S, Banan B et al (2014) Immune response to tissue-restricted self-antigens induces airway inflammation and fibrosis following murine lung transplantation. Am J Transplant 14:2359–2366. https://doi.org/10.1111/ajt.12908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suwara MI, Vanaudenaerde BM, Verleden SE et al (2014) Mechanistic differences between phenotypes of chronic lung allograft dysfunction after lung transplantation. Transpl Int 27:857–867. https://doi.org/10.1111/tri.12341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Uhlving HH, Andersen CB, Christensen IJ et al (2015) Biopsy-verified bronchiolitis obliterans and other noninfectious lung pathologies after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 21:531–538. https://doi.org/10.1016/j.bbmt.2014.12.004

    Article  PubMed  Google Scholar 

  33. Verleden GM, Glanville AR, Lease ED et al (2019) Chronic lung allograft dysfunction: definition, diagnostic criteria, and approaches to treatment—a consensus report from the pulmonary council of the ISHLT. J Heart Lung Transplant 38:493–503. https://doi.org/10.1016/j.healun.2019.03.009

    Article  PubMed  Google Scholar 

  34. Verleden GM, Vos R, Vanaudenaerde B et al (2015) Current views on chronic rejection after lung transplantation. Transpl Int 28:1131–1139. https://doi.org/10.1111/tri.12579

    Article  PubMed  Google Scholar 

  35. Verleden SE, Vasilescu DM, McDonough JE et al (2015) Linking clinical phenotypes of chronic lung allograft dysfunction to changes in lung structure. Eur Respir J 46:1430–1439. https://doi.org/10.1183/09031936.00010615

    Article  CAS  PubMed  Google Scholar 

  36. Vos R, Vanaudenaerde BM, Verleden SE et al (2010) Bronchoalveolar lavage neutrophilia in acute lung allograft rejection and lymphocytic bronchiolitis. J Heart Lung Transplant 29:1259–1269. https://doi.org/10.1016/j.healun.2010.05.019

    Article  PubMed  Google Scholar 

  37. Vos R, Verleden SE, Verleden GM (2015) Chronic lung allograft dysfunction: evolving practice. Curr Opin Organ Transplant 20:483–491. https://doi.org/10.1097/MOT.0000000000000236

    Article  CAS  PubMed  Google Scholar 

  38. Werlein C, Seidel A, Warnecke G et al (2020) Lung transplant pathology: an overview on current entities and procedures. Surg Pathol Clin 13:119–140. https://doi.org/10.1016/j.path.2019.11.003

    Article  PubMed  Google Scholar 

  39. Yoshihara S, Yanik G, Cooke KR, Mineishi S (2007) Bronchiolitis obliterans syndrome (BOS), bronchiolitis obliterans organizing pneumonia (BOOP), and other late-onset noninfectious pulmonary complications following Allogeneic Hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 13:749–759. https://doi.org/10.1016/j.bbmt.2007.05.001

    Article  PubMed  Google Scholar 

  40. Yousem SA (2001) Pulmonary apical cap: a distinctive but poorly recognized lesion in pulmonary surgical pathology. Am J Surg Pathol 25:679–683. https://doi.org/10.1097/00000478-200105000-00018

    Article  CAS  PubMed  Google Scholar 

  41. Yu J (2015) Postinfectious bronchiolitis obliterans in children: lessons from bronchiolitis obliterans after lung transplantation and hematopoietic stem cell transplantation. Korean J Pediatr 58:459–465. https://doi.org/10.3345/kjp.2015.58.12.459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yusen RD, Christie JD, Edwards LB et al (2013) The registry of the international society for heart and lung transplantation: thirtieth adult lung and heart-lung transplant report—2013; focus theme: age. J Heart Lung Transplant 32:965–978. https://doi.org/10.1016/j.healun.2013.08.007

    Article  PubMed  Google Scholar 

  43. Zhang L, Wang Y, Wu G et al (2018) Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res 19:170. https://doi.org/10.1186/s12931-018-0864-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Förderung

The grants of the European Research Council (ERC); European Consolidator Grant, XHale an Danny Jonigk (ref. no. 771883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Jonigk FRCPath.

Ethics declarations

Interessenkonflikt

C. Werlein, M. Ackermann, T.L. Hoffmann, F. Laenger und D. Jonigk geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeber

S. Perner, Lübeck

F. Stellmacher, Borstel

Die ursprüngliche Online-Version dieses Artikels wurde überarbeitet: Die Angaben der Schwerpunktherausgeber wurden korrigiert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werlein, C., Ackermann, M., Hoffmann, T.L. et al. Fibrotischer Lungenparenchymumbau nach Lungen- und Stammzelltransplantation. Pathologe 42, 17–24 (2021). https://doi.org/10.1007/s00292-020-00898-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-020-00898-2

Schlüsselwörter

Keywords

Navigation