The structure and fluorescence properties of polypropylene/carbon quantum dot composite fibers

Abstract

Carbon quantum dot (CQD)/polypropylene (PP) nanocomposite fibers were fabricated using the melt spinning technique. The composite fibers were studied using tensile measurements, wide-angle X-ray diffraction patterns, Fourier transform infrared spectroscopy, fluorescence spectrophotometry, scanning electron microscopy, transmission electron microscopy, and reflection spectrophotometry. The effects of CQDs size, CQD/matrix interface adhesion, and CQD loading on the structure, mechanical, orientation, and optical properties of PP/CQD nanocomposite fibers were investigated using Taguchi experimental design. The produced PP/CQD nanocomposites fibers exhibited color emission under excitation energy, which could be attributed to the presence of CQDs embedded inside the PP matrix. The photoluminescence emission spectra of the nanocomposite fibers containing smaller-size CQD nanoparticles were more significant than other samples at the wavelength of 347 nm. The results of reflection spectrophotometry measurements showed that the purity value was increased with enhancing CQD loading inside the polymer matrix. The results also demonstrated a yellowish red hue imparted to the nanocomposite fibers with improving CQD loading inside the polymer matrix. The amount of redness and yellowness of PP/CQD nanocomposite fibers was lower for the smaller-size nanoparticles and tended to blue and green color. The produced fibers could be easily fabricated and used potentially in a variety of applications like photochemical reactions, anti-counterfeiting, optoelectronic devices, etc.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Rossetti R, Brus L (1982) Electron–hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. J Phys Chem 86(23):4470–4472

    CAS  Article  Google Scholar 

  2. 2.

    Al-Ahmadi A (2012) Quantum dots—a variety of new applications. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  3. 3.

    Patil YS, Salunkhe PH, Navale YH, Patil VB, Ubale VP, Ghanwat AA (2020) Tetraphenylthiophene-thiazole-based π-conjugated polyazomethines: synthesis, characterization and gas sensing application. Polym Bull 77:2205–2226

    CAS  Article  Google Scholar 

  4. 4.

    Patil YS, Mahindrakar JN, Salunkhe PH, Ubale VP, Ghanwat AA (2019) Synthesis, characterization, and electrical and thermal stability of semiconducting π-conjugated polyazomethines containing a tetraphenylthiophene-oxazole unit. J Electron Mater 48:8067–8075

    CAS  Article  Google Scholar 

  5. 5.

    Patil YS, Salunkhe PH, Navale YH, Ubale VP, Patil VB, Maldar NN, Ghanwat AA (2018) Synthesis, characterization and conductivity study of co-polyazomethine polymer containing thiazole active ring. AIP Conf Proc 1989(1):020034

    Article  Google Scholar 

  6. 6.

    Paek K, Yang H, Lee J, Park J, Kim BJ (2014) Efficient colorimetric pH sensor based on responsive polymer–quantum dot integrated graphene oxide. ACS Nano 8(3):2848–2856

    CAS  Article  Google Scholar 

  7. 7.

    Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253

    CAS  Article  Google Scholar 

  8. 8.

    Luo PG, Sahu S, Yang S-T, Sonkar SK, Wang J, Wang H, LeCroy GE, Cao L, Sun Y-P (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1(16):2116–2127

    CAS  Article  Google Scholar 

  9. 9.

    Zhang M, Yao Q, Lu C, Li Z, Wang W (2014) Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye. ACS Appl Mater Interfaces 6(22):20225–20233

    CAS  Article  Google Scholar 

  10. 10.

    Alam A-M, Park B-Y, Ghouri ZK, Park M, Kim H-Y (2015) Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem 17(7):3791–3797

    CAS  Article  Google Scholar 

  11. 11.

    Safaie B, Youssefi M, Rezaei B (2019) Rheological behavior of polypropylene/carbon quantum dot nanocomposites: the effects of particles size, particles/matrix interface adhesion, and particles loading. Polym Bull. https://doi.org/10.1007/s00289-018-2611-8

    Article  Google Scholar 

  12. 12.

    Xiao J, Cheng Y, Guo C, Liu X, Zhang B, Yuan S, Huang J (2019) Novel functional fiber loaded with carbon dots for the deep removal of Cr (VI) by adsorption and photocatalytic reduction. J Environ Sci 83:195–204

    Article  Google Scholar 

  13. 13.

    Zhao Z, Geng C, Zhao X, Xue Z, Quan F, Xia Y (2019) Preparation of CdTe/alginate textile fibres with controllable fluorescence emission through a wet-spinning process and application in the trace detection of Hg2+ ions. Nanomaterials 9(4):570

    CAS  Article  Google Scholar 

  14. 14.

    Huang Y, Liu J, Yu Y, Zuo S (2015) Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films. J Alloy Compd 647:578–584

    CAS  Article  Google Scholar 

  15. 15.

    Wang Q, Wang H, Liu D, Du P, Liu P (2017) Synthesis of flake-shaped nitrogen-doped carbon quantum dot/polyaniline (N-CQD/PANI) nanocomposites via rapid-mixing polymerization and their application as electrode materials in supercapacitors. Synth Met 231:120–126

    CAS  Article  Google Scholar 

  16. 16.

    Yu L, Yue X, Yang R, Jing S, Qu L (2016) A sensitive and low toxicity electrochemical sensor for 2, 4-dichlorophenol based on the nanocomposite of carbon dots, hexadecyltrimethyl ammonium bromide and chitosan. Sensors Actuators B: Chem 224:241–247

    CAS  Article  Google Scholar 

  17. 17.

    Min S-Y, Bang J, Park J, Lee C-L, Lee S, Park J-J, Jeong U, Kim S, Lee T-W (2014) Electrospun polymer/quantum dot composite fibers as down conversion phosphor layers for white light-emitting diodes. RSC Adv 4(23):11585–11589

    CAS  Article  Google Scholar 

  18. 18.

    Saud PS, Pant B, Alam A-M, Ghouri ZK, Park M, Kim H-Y (2015) Carbon quantum dots anchored TiO2 nanofibers: effective photocatalyst for waste water treatment. Ceram Int 41(9):11953–11959

    CAS  Article  Google Scholar 

  19. 19.

    Safaei B, Youssefi M, Rezaei B, Irannejad N (2018) Synthesis and properties of photoluminescent carbon quantum dot/polyacrylonitrile composite nanofibers. Smart Sci 6(2):117–124. https://doi.org/10.1080/23080477.2017.1399318

    Article  Google Scholar 

  20. 20.

    Safaie B, Youssefi M, Rezaei B (2018) Estimating the interphase properties of polypropylene/carbon quantum dot nanocomposite fibers by micromechanical modeling. Colloid Polym Sci. https://doi.org/10.1007/s00396-018-4422-8

    Article  Google Scholar 

  21. 21.

    Luongo J (1960) Infrared study of polypropylene. J Appl Polym Sci 3(9):302–309

    CAS  Article  Google Scholar 

  22. 22.

    Sclavons M, Franquinet P, Carlier V, Verfaillie G, Fallais I, Legras R et al (2000) Quantification of the maleic anhydride grafted onto polypropylene by chemical and viscosimetric titrations, and FTIR spectroscopy. Polymer 41(6):1989–1999

    CAS  Article  Google Scholar 

  23. 23.

    De Roover B, Sclavons M, Carlier V, Devaux J, Legras R, Momtaz A (1995) Molecular characterization of maleic anhydride-functionalized polypropylene. J Polym Sci Part A: Polym Chem 33(5):829–842

    Article  Google Scholar 

  24. 24.

    Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4(4):455–458

    CAS  Article  Google Scholar 

  25. 25.

    Law A, Simon L, Lee-Sullivan P (2008) Effects of thermal aging on isotactic polypropylene crystallinity. Polym Eng Sci 48(4):627–633

    CAS  Article  Google Scholar 

  26. 26.

    Youssefi M, Safaie B (2013) Effect of multi walled carbon nanotube on the crystalline structure of polypropylene fibers. Fibers Polym 14(10):1602–1607. https://doi.org/10.1007/s12221-013-1602-5

    CAS  Article  Google Scholar 

  27. 27.

    Weidinger A, Hermans P (1961) On the determination of the crystalline fraction of isotactic polypropylene from x-ray diffraction. Macromol Chem Phys 50(1):98–115

    CAS  Article  Google Scholar 

  28. 28.

    Jose MV, Dean D, Tyner J, Price G, Nyairo E (2007) Polypropylene/carbon nanotube nanocomposite fibers: process–morphology–property relationships. J Appl Polym Sci 103(6):3844–3850

    CAS  Article  Google Scholar 

  29. 29.

    Marco C, Naffakh M, Gómez MA, Santoro G, Ellis G (2011) The crystallization of polypropylene in multiwall carbon nanotube-based composites. Polym Compos 32(2):324–333

    CAS  Article  Google Scholar 

  30. 30.

    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39(6):933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    CAS  Article  Google Scholar 

  31. 31.

    Zare Y, Rhee KY, Park SJ (2017) Modeling of tensile strength in polymer particulate nanocomposites based on material and interphase properties. J Appl Polym Sci. https://doi.org/10.1002/app.44869

    Article  Google Scholar 

  32. 32.

    Zhao H, Li RKY (2006) A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer 47(9):3207–3217. https://doi.org/10.1016/j.polymer.2006.02.089

    CAS  Article  Google Scholar 

  33. 33.

    Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62(10):1327–1340

    CAS  Article  Google Scholar 

  34. 34.

    Wu CL, Zhang MQ, Rong MZ, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos Sci Technol 65(3):635–645. https://doi.org/10.1016/j.compscitech.2004.09.004

    CAS  Article  Google Scholar 

  35. 35.

    Youssefi M, Safaie B (2018) The study on the mechanical properties of multi-walled carbon nanotube/polypropylene fibers. J Inst Eng (India) Ser E 99(1):37–42

    CAS  Article  Google Scholar 

  36. 36.

    Yang Y, Wen Z, Dong Y, Gao M (2006) Incorporating CdTe nanocrystals into polystyrene microspheres: towards robust fluorescent beads. Small 2(7):898–901

    CAS  Article  Google Scholar 

  37. 37.

    Li M, Zhang J, Zhang H, Liu Y, Wang C, Xu X, Tang Y, Yang B (2007) Electrospinning: a facile method to disperse fluorescent quantum dots in nanofibers without Förster resonance energy transfer. Adv Func Mater 17(17):3650–3656

    Article  Google Scholar 

  38. 38.

    Venugopal BR, Ravishankar N, Perrey CR, Shivakumara C, Rajamathi M (2006) Layered double hydroxide−CdSe quantum dot composites through colloidal processing: effect of host matrix−nanoparticle interaction on optical behavior. J Phys Chem B 110(2):772–776. https://doi.org/10.1021/jp054774j

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Lee C, Pant B, Alam A-M, An T, Chung H-J, Hong S-T, Park S-J, Park M, Kim H-Y (2016) Biocompatible and photoluminescent keratin/poly(vinyl alcohol)/carbon quantum dot nanofiber: A novel multipurpose electrospun mat. Macromol Res. https://doi.org/10.1007/s13233-016-4124-3

    Article  Google Scholar 

  40. 40.

    Liu Z, Chen Y, Ding W (2016) Preparation, dynamic rheological behavior, crystallization, and mechanical properties of inorganic whiskers reinforced polylactic acid/hydroxyapatite nanocomposites. Journal of Applied Polymer Science. https://doi.org/10.1002/app.43381

    Article  Google Scholar 

  41. 41.

    Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interface Sci 6(5–6):457–463

    Article  Google Scholar 

  42. 42.

    Sadeghi-Kiakhani M, Safapour S (2015) Improvement of the dyeing and fastness properties of a naphthalimide fluorescent dye using poly (amidoamine) dendrimer. Color Technol 131(2):142–148

    CAS  Article  Google Scholar 

  43. 43.

    Seto F, Muraoka Y, Sakamoto N, Kishida A, Akashi M (1999) Surface modification of synthetic fiber nonwoven fabrics with poly (acrylic acid) chains prepared by corona discharge induced grafting. Die Angew Makromol Chem 266(1):56–62

    CAS  Article  Google Scholar 

  44. 44.

    Pal A, Sk MP, Chattopadhyay A (2016) Conducting carbon dot-polypyrrole nanocomposite for sensitive detection of picric acid. ACS Appl Mater Interfaces 8(9):5758–5762. https://doi.org/10.1021/acsami.5b11572

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Chen J, Meng C, Xie J, Pan L, Zhou D, Chen JN (2016) Laser eco-printing technology for silk fabric patterns. Indian J Fibre Text Res (IJFTR) 41(1):78–83

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mostafa Youssefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safaie, B., Youssefi, M. & Rezaei, B. The structure and fluorescence properties of polypropylene/carbon quantum dot composite fibers. Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03572-6

Download citation

Keywords

  • Polypropylene
  • Carbon quantum dot
  • Fluorescence
  • Composite fibers