Thermal and mechanical properties of poly(lactic acid) filled with modified silicon dioxide: importance of the surface area


In this research work, the effect of the change in the surface area of silicon dioxide nanoparticles of the same size on mechanical properties of poly(lactic acid) nanocomposites (PLA) was studied, as well as the role of coupling agent amount in the compatibility of these nanomaterials. We consider a spherical silicon dioxide with a surface area of 170–200 m2/g (labeled as S–SiO2) and another considered amorphous with a surface area of 180–600 m2/g (labeled as P-SiO2). This surface areas difference plays an important role in modifying of nanoparticles polarity by incorporating a coupling agent and its integration into partially polar polymers. According to obtained results, for nanomaterials with high surface area, it was observed while increasing coupling agent amount, the elasticity of the composite was observed to increase. In contrast, in nanomaterials with spherical nanoparticles, it was observed that as the amount of coupling agent decreases, the resistance of the material increases, reaching a maximum when a 10:2 ratio is used. It was observed that behaviors for both nanoparticles were different, which gives an idea that the incorporation of nanoparticles in polymers is not an issue of coupling agent or quantity only, it is more important as it is arranged on the surface. This kind of couplings does not only affect mechanical properties, since the thermal behavior of the material was also influenced, where it was observed that particles with low surface area modify the crystallization rate when they have different percentages of coupling agent on the surface. Furthermore, it is observed that the incorporation of nanoparticles with high surface areas area does not modify the crystallization rate significantly. Besides, in both cases, it was observed that the highest crystallization rate is reached when a 10:2 ratio is used. However, the energy required to form crystals remains unchanged. Therefore, it is considered that the incorporation of nanoparticles only affects the crystal formation rate without disturbing the energy requirement for crystal formation. Finally, a maximum in the 10:2 ratio was observed for the compatibility in both particles, which was manifested in an increase in the storage module through a dynamic mechanical analysis. The rate of crystal formation as well as the number of formed crystals have a considerable effect on mechanical properties of nanocomposites when the surface area is modified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Nabi Saheb D, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polymer Technol J Polymer Process Inst 18(4):351–363

    Article  Google Scholar 

  2. 2.

    Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Progress Polymer Sci 33(8):820–852

    CAS  Article  Google Scholar 

  3. 3.

    Sengupta S, Manna S, Roy U, Das P (2018) Manufacturing of biodegradable poly lactic acid (pla): green alternatives to petroleum derived plastics. In: Reference module in materials science and materials engineering. Encyclopedia of renewable and sustainable materials, vol 3. Elsevier, pp 561–569

  4. 4.

    Wang G, Zhang D, Wan G, Li Bo, Zhao G (2019) Glass fiber reinforced pla composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer 181:121803

    CAS  Article  Google Scholar 

  5. 5.

    Suryanegara L (2009) Antonio Norio Nakagaito, and Hiroyuki Yano 2009 The effect of crystallization of pla on the thermal and mechanical properties of microfibrillated cellulose-reinforced pla composites. Compos Sci Technol 69:1187–1192

    CAS  Article  Google Scholar 

  6. 6.

    Chen P-Y, Lian H-Y, Shih Y-F, Chen-Wei S-M, Jeng R-J (2017) Preparation, characterization and crystallization kinetics of kenaf fiber/multi-walled carbon nanotube/polylactic acid (pla) green composites. Mater Chem Phys 196:249–255

    CAS  Article  Google Scholar 

  7. 7.

    Hung C-Y, Wang C-C, Chen C-Y (2013) Enhanced the thermal stability and crys- tallinity of polylactic acid (pla) by incorporated reactive ps-b-pmma-b-pgma and ps-b-pgma block copolymers as chain extenders. Polymer 54(7):1860–1866

    CAS  Article  Google Scholar 

  8. 8.

    Garcia CV, Shin GH, Kim JT (2018) Metal oxide-based nanocomposites in food packaging: applications migration and regulations. Trends Food Sci Technol 82:21–31

    CAS  Article  Google Scholar 

  9. 9.

    Shankar S, Wang L-F, Rhim J-W (2018) Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, uv-light barrier, and antibacterial properties of pla- based nanocomposite films. Mater Sci Eng, C 93:289–298

    CAS  Article  Google Scholar 

  10. 10.

    Sarikhani K, Nasseri R, Lotocki V, Thompson RB, Park CB, Chen P (2016) Effect of well-dispersed surface-modified silica nanoparticles on crystallization behavior of poly (lactic acid) under com- pressed carbon dioxide. Polymer 98:100–109

    CAS  Article  Google Scholar 

  11. 11.

    Vandenberg ET, Bertilsson L, Liedberg B, Uvdal K, Erlandsson R, Elwing H, Lundström I (1991) Structure of 3-aminopropyl triethoxy silane on silicon oxide. J Colloid Interface Sci 147(1):103–118

    CAS  Article  Google Scholar 

  12. 12.

    Vallejo-Montesinos J, Gámez-Cordero J, Zarraga R, Pérez MCP, Gonzalez-Calderon JA (2020) Influence of the surface modification of titanium dioxide nanoparticles TiO2 under efficiency of silver nanodots deposition and its effect under the properties of starch–chitosan (sc) films. Polymer Bull 77(1):107–133

    CAS  Article  Google Scholar 

  13. 13.

    López-Zamora L, Martínez-Martínez HN, González-Calderón JA (2018) Improvement of the colloidal stability of titanium dioxide particles in water through silicon based coupling agent. Mater Chem Phys 217:285–290

    Article  CAS  Google Scholar 

  14. 14.

    Gonzalez-Calderon JA, Mendoza G, Peña-Juárez MG, Pérez E et al (2020) Use of chemically modified titanium dioxide particles to mediate the non-isothermal cold crystallization of poly (latic acid). J Mexican Chem Soc 64(2):117–136

  15. 15.

    Knowles GP, Graham JV, Delaney SW, Chaffee AL (2005) Aminopropyl- functionalized mesoporous silicas as co2 adsorbents. Fuel Process Technol 86:1435–1448

    CAS  Article  Google Scholar 

  16. 16.

    Jaksa G, Štefane B, Kovač J (2014) Influence of different solvents on the morphology of aptms-modified silicon surfaces. Appl Surf Sci 315:516–522

    CAS  Article  Google Scholar 

  17. 17.

    Jakša G, Štefane B, Kovač J (2013) Xps and afm characterization of aminosilanes with different numbers of bonding sites on a silicon wafer. Surf Interface Anal 45(11–12):1709–1713

    Article  CAS  Google Scholar 

  18. 18.

    Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly (lactic acid) crystallization. Progress Polymer Sci 37(12):1657–1677

    CAS  Article  Google Scholar 

  19. 19.

    Rene Androsch HM, Iqbal N, Schick C (2015) Non-isothermal crystal nucleation of poly (l-lactic acid). Polymer 81:151–158

    Article  CAS  Google Scholar 

  20. 20.

    As’habi L, Jafari SH, Khonakdar HA, Häussler L, Wagenknecht U, Heinrich G (2013) Non-isothermal crystallization behavior of pla/lldpe/nanoclay hybrid: synergistic role of lldpe and clay. Thermochim Acta 565:102–113

    Article  CAS  Google Scholar 

  21. 21.

    Chen H, Pyda M, Cebe P (2009) Non-isothermal crystallization of pet/pla blends. Ther- mochimica Acta 492(1–2):61–66

    CAS  Article  Google Scholar 

  22. 22.

    Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer 48(23):6855–6866

    CAS  Article  Google Scholar 

  23. 23.

    Nofar M, Tabatabaei A, Park CB (2013) Effects of nano-/micro-sized additives on the crystallization behaviors of pla and pla/co2 mixtures. Polymer 54(9):2382–2391

    CAS  Article  Google Scholar 

  24. 24.

    Tsuji H, Takai H, Fukuda N, Takikawa H (2006) Non-isothermal crystallization behavior of poly (l-lactic acid) in the presence of various additives. Macromol Mater Eng 291(4):325–335

    CAS  Article  Google Scholar 

  25. 25.

    Lizundia E, Penayo MC, Guinault A, Vilas JL, Domenek S (2019) Impact of zno nanoparticle morphology on relaxation and transport properties of pla nanocomposites. Polym Testing 75:175–184

    CAS  Article  Google Scholar 

  26. 26.

    Kissinger HE (1956) Variation of peak temperature with heating rote in differential thermal analysis. J Res NatlBureau Standards 57:217

    CAS  Article  Google Scholar 

  27. 27.

    Blaine RL, Kissinger HE (2012) Homer kissinger and the kissinger equation. Thermochim Acta 540:1–6

    CAS  Article  Google Scholar 

  28. 28.

    Vyazovkin S (2002) Is the kissinger equation applicable to the processes that occur on cooling? Macro- molecular Rapid Commun 23(13):771–775

    CAS  Article  Google Scholar 

  29. 29.

    Vyazovkin S, Burnham AK, Criado JM, Perez-maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    CAS  Article  Google Scholar 

  30. 30.

    Friedman HL (1969) New methods for evaluating kinetic parameters from thermal analysis data. J Polymer Sci Part B Polymer Lett 7(1):41–46

    CAS  Article  Google Scholar 

  31. 31.

    Liao DL, Wu GS, Liao BQ (2009) Zeta potential of shape-controlled tio2 nanoparticles with surfactants. Colloids Surf, A 348(1–3):270–275

    CAS  Article  Google Scholar 

  32. 32.

    Alvarado ED, Juárez MGP, Pérez CP, Perez E, Gonzalez JA et al (2019) Improvement in the dispersion of tio2 particles inside chitosan-methyl cellulose films by the use of silane coupling agent. J Mexican Chem Soc 63(2):154–168

    CAS  Google Scholar 

  33. 33.

    Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta 511(1–2):129–139

    CAS  Article  Google Scholar 

  34. 34.

    Fernández MJ, Fernández MD (2020) Effect of organic modifier and clay content on non-isothermal cold crystallization and melting behavior of polylactide/organovermiculite nanocomposites. Polymers 12(2):364

  35. 35.

    Chen Y, Yao X, Qun Gu, Pan Z (2013) Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites. J Polym Eng 33(2):163–171

    Article  CAS  Google Scholar 

  36. 36.

    Zhang Y, Deng B, Liu Q, Chang G (2013) Nonisothermal crystallization kinetics of poly (lactic acid)/nanosilica composites. J Macromol Sci, Part B 52(2):334–343

    CAS  Article  Google Scholar 

  37. 37.

    Zhu A, Diao H, Rong Q, Cai A (2010) Preparation and properties of polylactide—silica nanocomposites. J Appl Polym Sci 116(5):2866–2873

    CAS  Google Scholar 

  38. 38.

    Pilla S, Kramschuster A, Yang L, Lee J, Gong S, Turng L-S (2009) Microcellular injection-molding of polylactide with chain-extender. Mater Sci Eng, C 29(4):1258–1265

    CAS  Article  Google Scholar 

  39. 39.

    Mofokeng JP, Luyt AS, Tábi T, Kovács J (2012) Comparison of injection moulded natural fibre-reinforced composites with pp and pla as matrices. J Thermop Compos Mater 25(8):927–948

    Article  CAS  Google Scholar 

  40. 40.

    Wen X, Lin Y, Han C, Zhang K, Ran X, Li Y, Dong L (2009) Thermomechanical and optical properties of biodegradable poly (l-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci 114(6):3379–3388

    CAS  Article  Google Scholar 

  41. 41.

    Glotzer SC, Paul W (2002) Molecular and mesoscale simulation methods for polymer materials. Ann Rev Mater Res 32(1):401–436

    CAS  Article  Google Scholar 

  42. 42.

    Huang TC, Yeh JM, Yang JC (2010) Effect of silica size on the thermal, mechanical and biodegradable properties of polylactide/silica composite material prepared by melt blending. Adv Mater Res 123-125:1215–1218

  43. 43.

    Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63(2):283–293

    CAS  Article  Google Scholar 

  44. 44.

    Zhao Y, Qiu Z, Yang W (2009) Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly (l-lactide). Compos Sci Technol 69(5):627–632

    CAS  Article  Google Scholar 

  45. 45.

    Jyh-Hong Wu, Yen MS, Kuo MC, Chen BH (2013) Physical properties and crystallization behavior of silica particulates reinforced poly (lactic acid) composites. Mater Chem Phys 142(2–3):726–733

    Google Scholar 

Download references


The authors wish to thank Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship granted to Isidro Montes-Zavala that allowed the fulfillment of this work. E. O. Castrejón-González wishes to acknowledge CONACYT for financial support through Project No. INFR-2015-01-254675. The authors want to acknowledge to Fernando Rodríguez Juárez for the facilities given in SEM tests. The authors express their gratitude to CONACYT for the support to J.A. González-Calderón through the “Cátedras CONACYT” program.

Author information



Corresponding author

Correspondence to J. A. Gonzalez-Calderon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montes-Zavala, I., Pérez-González, M.J., Castrejón-González, E.O. et al. Thermal and mechanical properties of poly(lactic acid) filled with modified silicon dioxide: importance of the surface area. Polym. Bull. (2021).

Download citation


  • Poly(lactic acid)
  • Mechanical properties
  • Nanocomposites
  • Non-isothermal crystallization