Physico–mechanical and thermal stability of wood flour/waste polypropylene nanocomposites: impact of flame retardant fillers and gamma irradiation

Abstract

The synergistic effect of fire retardant agents, nanoclay (NC), aluminum trihydrate (ATH) and Hisil on the physico–mechanical properties, thermal degradation and flame retardance performance of wood flour/waste polypropylene composites (WF/WPP) was studied. The prepared composites were irradiated with gamma radiation doses of 10 and 20 kGy. The developed nanocomposites were characterized by mechanical, thermogravimetric (TGA) and flammability measurements. The results indicated that the synergistic effect of the fillers, 10 phr NC and 5 phr Hisil, was found greater than that of 10 phr NC/5 phr ATH or NC alone. Loading the fabricated composite with 5 phr ATH or Hisil created a good fire retardant wood possessing many advantages of fireproof, waterproof, moistureproof, chemical resistance and environmentally friendly features. Similarly, the application of gamma irradiation led to an overall improvement in the mechanical, physical and thermal stability of the prepared composites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Ling SL, Koay S, Chan M, Tshai K, Chantara T, Pang M (2020) Wood plastic composites produced from postconsumer recycled polystyrene and coconut shell: effect of coupling agent and processing aid on tensile, thermal, and morphological properties. Polym Eng & sci 60(1):202–210. https://doi.org/10.1002/pen.25273

    CAS  Article  Google Scholar 

  2. 2.

    Shah BL, Matuana LM (2005) Novel coupling agents for PVC/wood-flour composites. Vinyl Addit Technol 11:160–165. https://doi.org/10.1002/vnl.20056

    CAS  Article  Google Scholar 

  3. 3.

    Jiang HH, Kamdem DP (2004) Effects of copper amine treatment on mechanical properties of PVC/wood-flour composites. Vinyl Addit Technol 10(2):70–78. https://doi.org/10.1002/vnl.20010

    CAS  Article  Google Scholar 

  4. 4.

    Blutmager, A.; Spahn, T.; varga, M.; friesenbichler, W.; Riedl, H.; Mayrhofer, P. Processing Fiber/Reinforced Polymers: Specific Wear Phenomena Caused by Filler Materials. Polym. Eng. &sci. 2020, 60(1), 78–85. DOI https://doi.org/10.1002/pen.25261

  5. 5.

    Bledzki AK, Letman M, Viksne A, Rence L (2005) A comparison of compounding processes and wood type for wood fibre PP composites. Comp Part A Appl Sci Manufact 36(6):789–797. https://doi.org/10.1016/j.compositesa.2004.10.029

    CAS  Article  Google Scholar 

  6. 6.

    Ruksakulpiwat Y, Suppakarn N, Sutapan W, Thomtong W (2007) Vetiver polypropylene composites: physical and mechanical properties. Compos Part A 38:590–601. https://doi.org/10.1016/j.compositesa.2006.02.006

    CAS  Article  Google Scholar 

  7. 7.

    Rana AK, Mandal A, Mitra BC, Jacobson R, Rowell R, Banerjee AN (1998) Short jute fiber/reinforced polypropylene composites: Effect of compatibilizer. Appl Polym Sci 69:329–338. https://doi.org/10.1002/(SICI)1097-4628(19980711)69:2%3c329::AID-APP14%3e3.0.CO;2-R

    CAS  Article  Google Scholar 

  8. 8.

    Feng D, Caulfield DF, Sanadi AR (2001) Effect of compatibilizer on the structure property relationships of kenaf-fiber/polypropylene composites. Polym Compos 22:506–517. https://doi.org/10.1002/pc.10555

    CAS  Article  Google Scholar 

  9. 9.

    Pal K, Mukherjee M, Frackowiak S, Kozlowski M, Das K (2014) Improvement of the physico-mechanical properties and stability of waste polypropylene in the presence of wood flour and (maleic anhydride)-grafted polypropylene. Vinyl Addit Technol 20:24–30. https://doi.org/10.1002/vnl.21325

    CAS  Article  Google Scholar 

  10. 10.

    Demir H, Balkose D, Ulku S (2006) Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites. Polym Degrad Stabil 91:1079–1085. https://doi.org/10.1016/j.polymdegradstab.2005.07.012

    CAS  Article  Google Scholar 

  11. 11.

    Zirnstein B, Schulze D, Schartel B (2020) Combination of phosphorous flame retardants and aluminum trihydrate in multicomponent EPDM composites. Polym Eng & sci 60(2):267–280. https://doi.org/10.1002/pen.25280

    CAS  Article  Google Scholar 

  12. 12.

    Khan MA, Khan RA, Zaman HU, Alam MN, Hoque MA (2009) Effect of surface modification of jute with acrylic monomers on the performance of polypropylene composites. Reinf Plast Comp 29(8):1195–1205. https://doi.org/10.1177/0731684409103147

    CAS  Article  Google Scholar 

  13. 13.

    Ismail MR, Abdel-Rahman HA, Younes MM, Hamed E, El-Hamouly SH (2013) Studies on g-irradiated polymer–nano calcined clay blended cement mortar composites. J Indust Eng Chemist 19:361–836. https://doi.org/10.1016/j.jiec.2012.09.003

    CAS  Article  Google Scholar 

  14. 14.

    Chan ML, Lau KT, Wong TT, Ho MP, Hui D (2011) Mechanism of reinforcement in a nanoclay/polymer composite. Compos Part B-Eng 42:1708–1712. https://doi.org/10.1016/j.compositesb.2011.03.011

    CAS  Article  Google Scholar 

  15. 15.

    Chatterjee K, Naskar K (2008) Study on characterization and properties of Nanosilica-filled thermoplastic vulcanizates. Poly Eng Sci 48:1077–1084. https://doi.org/10.1002/pen.21052

    CAS  Article  Google Scholar 

  16. 16.

    Kord B (2011) Influence of maleic anhydride on the flexural, tensile and impact characteristics of Sawdust flour reinforced polypropylene composite. World Appl Sci J 12(7):1014–1016

    CAS  Google Scholar 

  17. 17.

    Raslan HA, Fathy ES, Mohamed RM (2018) Effect of gamma irradiation and fiber surface treatment on the properties of bagasse fiberreinforced waste polypropylene composites. Int J Polym Anal Ch 23(2):181–192. https://doi.org/10.1080/1023666X.2017.14055

    CAS  Article  Google Scholar 

  18. 18.

    TH Quazi Shubhra (2011) AK Alam, Effect of gamma radiation on the mechanical properties of natural silk fiber and synthetic E-glass fiber reinforced polypropylene composites: a comparative study. J Radia Phys Chem 80:1228–1232. https://doi.org/10.1016/j.radphyschem.2011.04.010

    CAS  Article  Google Scholar 

  19. 19.

    Haydaruzzaman A, Khan R, Khan A, Hossain M (2009) Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites. Radiat Phys Chem 78:986–993. https://doi.org/10.1016/j.radphyschem.2009.06.011

    CAS  Article  Google Scholar 

  20. 20.

    Mohan TP, Kanny K (2011) Water barrier properties of nanoclay filled sisal fiber reinforced epoxy composites. Composit Part A 42:385–393. https://doi.org/10.1016/j.compositesa.2010.12.010

    CAS  Article  Google Scholar 

  21. 21.

    Nikola S, Vladimir J, Alan A (2014). Chemical and Thermal Properties of WPC Surface After Exposure to Concentrated Acids, 25th International Scientific Conference, new materials and technologies in the function of wooden products, Croatia,

  22. 22.

    Kass A, Wangaard FF, Schroeder HA (1970) Chemical Degradation of Wood: The Relationship Between Strength Retention and Pentoson Content. Wood & Fiber 2(1):31–39

    CAS  Google Scholar 

  23. 23.

    El-Nemr KF, El-Naggar MY, Fathy ES (2018) Waste Ceramic Dust Activated by Gamma Radiation and Coupling Agents as Reinforcement for Nitrile Rubber. Vinyl Addit Technol 24:37–43. https://doi.org/10.1002/vnl.21515

    CAS  Article  Google Scholar 

  24. 24.

    Biswal M, Mohanty S, Nayak K (2012) Thermal Stability and Flammability of Banana-Fiber-Rein forced Polypropylene Nanocomposites. Appl Poly Sci 125:432–443. https://doi.org/10.1002/app.35246

    CAS  Article  Google Scholar 

  25. 25.

    Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mater 14:881. https://doi.org/10.1021/cm011236k

    CAS  Article  Google Scholar 

  26. 26.

    Lewin M (2006) Reflections on migration of clay and structural changes in nanocomposites. Polym Adv Technol 17:758. https://doi.org/10.1002/pat.762

    CAS  Article  Google Scholar 

  27. 27.

    Liang Y, Yu J, Feng Z, Ai P (2013) Flammability and thermal properties of bitumen with aluminium trihydroxide and expanded vermiculite. Constr Build Mater 48:1114–1119. https://doi.org/10.1016/j.conbuildmat.2013.07.074

    Article  Google Scholar 

  28. 28.

    Gilman JW, Kashiwagi T, Harris RH, Lomakin S, Lichetenhan JD, Jones P, Bolf A, Al-Malaika S, Wilkie C, Golovoy CA (1999) Chemistry and Technology of Polymer Additives. Blackwell Science, London

    Google Scholar 

  29. 29.

    Kashiwagi T, Shields JR, Harris RH, Davis RD (2003) Flame-retardant mechanism of silica: effects of resin molecular weight. Appl Polym Sci 87:1541. https://doi.org/10.1002/app.11967

    CAS  Article  Google Scholar 

  30. 30.

    Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci & Eng R 63:100–125. https://doi.org/10.1016/j.mser.2008.09.002

    CAS  Article  Google Scholar 

  31. 31.

    Nair A, Kurian P, Joseph R (2012) Effect of aluminium hydroxide, chlorinated polyethylene, decabromo biphenyl oxide and expanded graphite on thermal, mechanical and sorption properties of oil-extended ethylene–propylene–diene terpolymer rubber. Mater Design 40:80–89. https://doi.org/10.1016/j.matdes.2012.03.032

    CAS  Article  Google Scholar 

  32. 32.

    Yang F, Nelson GL (2011) Combination effect of nanoparticles with flame retardants on the flammability of nanocomposites. Polym Degrad Stabil 96:270–276. https://doi.org/10.1016/j.polymdegradstab.2010.06.003

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heba A. Raslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raslan, H.A., Awad, E.H. Physico–mechanical and thermal stability of wood flour/waste polypropylene nanocomposites: impact of flame retardant fillers and gamma irradiation. Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03562-8

Download citation

Keywords

  • Flame retardant additives
  • Wood flour
  • Waste polypropylene
  • Composites
  • Nanoclay