Production and characterization of films based on gelatin, agave microfibers and nanoclays

Abstract

The objective of this study was to produce and characterize gelatin films produced by thermo-compression, a technique that requires less processing time and space, making it appropriate for the development of commercial biodegradable protein-based films. A control film of gelatin with glycerol and water (M1) was compared with three films reinforced with Agave angustifolia Haw microfibers (MF) (M2–M4), three films reinforced with bentonite nanoclay (BN) (M5–M7), and three films reinforced with both MF and BN (M8–M10). The surface and cross-section morphology of the films showed some roughness with pores and inhomogeneities as the MF and BN concentration increased. The X-ray diffraction analysis confirmed the nanoclay intercalation. The films thickness was a function of the glycerol content, and all films had an apparent density slightly higher than unity. The films appearance was measured via the CIELab scale where the parameter a* was found to increase toward a reddish color, while b* showed an increasingly yellowish color. The presence of both MF and BN led to increased tortuosity inside the films, thus affecting the permeability of water molecules. Particles addition increased the tensile strength and elasticity, while the elongation at break decreased. The thermal stability improved with particles addition, especially for BN due to its inorganic nature. All the results could be related to a high level of interaction between the components and the protein matrix as observed via Fourier transform infrared spectroscopy, showing proper compatibility and a synergy among the materials. Due to the properties obtained, biomaterials can have good mechanical and high barrier properties combined with short life, disposable and environmentally friendly for food packaging and biomedical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Ahmed S, Ikram S (2016) Chitosan and gelatin based biodegradable packaging films with UV-light protection. J Photochem Photobiol B 163:115–124. https://doi.org/10.1016/j.jphotobiol.2016.08.023

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Merino D, Mansilla AY, Casalongué CA, Alvarez VA (2019) Performance of bio-based polymeric agricultural mulch films. In: Gutiérrez T (ed) Polymers for agri-food applications. Springer, Cham, pp 215–240. https://doi.org/10.1007/978-3-030-19416-1_12

    Google Scholar 

  3. 3.

    Caisa J, Bras J, Mondragon I, Nechita P, Plackett D, Šimon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications-a review of recent developments. BioResources 7(2):2506–2552

    Google Scholar 

  4. 4.

    Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem 75(1):1–9. https://doi.org/10.1094/CCHEM.1998.75.1.1

    CAS  Article  Google Scholar 

  5. 5.

    Araghi M, Moslehi Z, Mohammadi-Nafchi A, Mostahsan A, Salamat N, Daraei-Garmakhany A (2015) Cold water fish gelatin modification by a natural phenolic cross-linker (ferulic acid and caffeic acid). Food Sci Nutr 3(5):370–375. https://doi.org/10.1002/fsn3.230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Gabr MH, Matsuoka K, Okubo K, Fujii T (2010) Effect of different types of aramid fibres on mechanical and thermal properties of nano-cellulose composites for vehicle applications. Int J Veh Noise Vib 6(2–4):118–129. https://doi.org/10.1504/IJVNV.2010.036681

    Article  Google Scholar 

  7. 7.

    Chuaynukul K, Nagaranjan M, Prodpran T (2018) Comparative characterization of bovine and fish gelatin films fabricated by compression molding and solution casting. J Polym Environ 26:1230–1252. https://doi.org/10.1007/s10924-017-10305

    Article  Google Scholar 

  8. 8.

    Andreuccetti C, Carvalho RA, Galicia-García T, Martinez-Bustos F, Gonzalez-Nuñez R, Grosso CRF (2012) Functional properties of gelatin-based films containing yucca schidigera extract produced via casting, extrusion and blown extrusion processes: a preliminary study. J Food Eng 113(1):33–40. https://doi.org/10.1016/j.jfoodeng.2012.05.031

    CAS  Article  Google Scholar 

  9. 9.

    Park JW, Whiteside WS, Cho SY (2008) Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. LWT Food Sci Technol 41:692–700. https://doi.org/10.1016/j.lwt.2007.04.015

    CAS  Article  Google Scholar 

  10. 10.

    Ramesh M, Palanikumar K, Reddy KH (2017) Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 79:558–584. https://doi.org/10.1016/j.rser.2017.05.094

    Article  Google Scholar 

  11. 11.

    Hernández YR, García SLA, Maruri DT, Jiménez AAR, Camacho DBH, Arenas OML (2018) Optimization of the microwave-assisted ethanosolv extraction of lignocellulosic compounds from the bagasse of Agave angustifolia Haw using the response methodology. J Agric Food Chem 66(13):3533–3540. https://doi.org/10.1021/acs.jafc.7b04627

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Flores-Sahagun TH, Dos-Santos LP, Dos-Santos J, Mazzaro I, Mikowski A (2013) Characterization of blue agave bagasse fibers of Mexico. Compos Part A Appl Sci Manuf 45:153–161. https://doi.org/10.1016/j.compositesa.2012.09.001

    CAS  Article  Google Scholar 

  13. 13.

    Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil HPS, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410. https://doi.org/10.1016/j.matdes.2012.10.044

    CAS  Article  Google Scholar 

  14. 14.

    Rhim JW (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86(2):691–699. https://doi.org/10.1016/j.carbpol.2011.05.010

    CAS  Article  Google Scholar 

  15. 15.

    Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim Acta 442(1–2):74–77. https://doi.org/10.1016/j.tca.2006.01.017

    CAS  Article  Google Scholar 

  16. 16.

    Chuaynukul K, Nagarajan M, Prodpran T, Benjakul S, Songtipya P, Songtipya L (2018) Comparative characterization of bovine and fish gelatin films fabricated by compression molding and solution casting methods. J Polym Environ 26(3):1239–1252. https://doi.org/10.1007/s10924-017-1030-5

    CAS  Article  Google Scholar 

  17. 17.

    Rhim JW, Gennadios A, Weller CL, Carole C, Hanna MA (1998) Soy protein isolate–dialdehyde starch films. Ind Crop Prod 8(3):195–203. https://doi.org/10.1016/S0926-6690(98)00003-X

    CAS  Article  Google Scholar 

  18. 18.

    Cuq B, Gontard N, Cuq JL, Guilbert S (1996) Functional properties of myofibrillar protein-based biopackaging as affected by film thickness. J Food Sci 61(3):580–584. https://doi.org/10.1111/j.1365-2621.1996.tb13163.x

    CAS  Article  Google Scholar 

  19. 19.

    Ghasemlou M, Khodaiyan F, Oromiehie A, Yarmand MS (2011) Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem 127:1496–1502. https://doi.org/10.1016/j.foodchem.2011.02.003

    CAS  Article  Google Scholar 

  20. 20.

    ASTM (1993) E96-93 Standard test methods for water-vapor transmission of materials. In: Annual book of ASTM standards, vol 04.06. American Society for Testing and Materials, Philadelphia

  21. 21.

    ASTM (2002) D882-02 Standard test method for tensile properties of thin plastic sheeting. In: Annual book of ASTM standards, vol 8.01. American Society for Testing and Materials, Philadelphia

  22. 22.

    Hoque MS, Benjakul S, Prodpran T (2011) Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocoll 25(1):82–90. https://doi.org/10.1016/j.foodhyd.2010.05.008

    CAS  Article  Google Scholar 

  23. 23.

    Solorza-Feria J, Ortiz-Zarama MA, Jimenez-Aparicio A, Rodrigue D (2020) Production and characterization of fully biobased foamed films based on gelatin. Cell Polym 39(2):69–97. https://doi.org/10.1177/0262489319897632

    CAS  Article  Google Scholar 

  24. 24.

    Ciannamea EM, Stefani PM, Ruseckaite RA (2014) Physical and mechanical properties of compression molded and solution casting soybean protein concentrate based films. Food Hydrocoll 38:193–204. https://doi.org/10.1016/j.foodhyd.2013.12.013

    CAS  Article  Google Scholar 

  25. 25.

    Zubeldía F, Ansorena MR, Marcovich NE (2015) Wheat gluten films obtained by compression molding. Polym Test 43:68–77. https://doi.org/10.1016/j.polymertesting.2015.02.001

    CAS  Article  Google Scholar 

  26. 26.

    Rol F, Rouilly A, Bras J (2020) Thermo-compression of cellulose nanofibrils. Cellulose 27:25–40. https://doi.org/10.1007/s10570-019-02720-6

    CAS  Article  Google Scholar 

  27. 27.

    Nilsuwan K, Guerrero P, de la Caba K, Benjakul S, Prodpran T (2019) Properties of fish gelatin films containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll 97:105–236. https://doi.org/10.1016/j.foodhyd.2019.105236

    CAS  Article  Google Scholar 

  28. 28.

    Teli MD, Jadhav AC (2016) Effect of alkali treatment on the properties of Agave augustifolia v. marginata fibre. Int Res J Eng Technol 3(5):2754–2761

    Google Scholar 

  29. 29.

    Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B (2006) Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. J Appl Polym Sci 102(2):1974–1984. https://doi.org/10.1002/app.24584

    CAS  Article  Google Scholar 

  30. 30.

    Wang S, Dong Y, He M, Chen L, Yu X (2009) Characterization of GMZ bentonite and its application in the adsorption of Pb (II) from aqueous solutions. Appl Clay Sci 43(2):164–171. https://doi.org/10.1016/j.clay.2008.07.028

    CAS  Article  Google Scholar 

  31. 31.

    Zhirong L, Uddin MA, Zhanxue S (2011) FT-IR and XRD analysis of natural Na-bentonite and Cu (II)-loaded Na-bentonite. Spectrochim Acta A 79(5):1013–1016. https://doi.org/10.1016/j.saa.2011.04.013

    CAS  Article  Google Scholar 

  32. 32.

    Atia AA (2008) Adsorption of chromate and molybdate by cetylpyridinium bentonite. Appl Clay Sci 41(1–2):73–84. https://doi.org/10.1016/j.clay.2007.09.011

    CAS  Article  Google Scholar 

  33. 33.

    Madejová J, Janek M, Komadel P, Herbert HJ, Moog H (2002) FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Appl Clay Sci 20(6):255–271. https://doi.org/10.1016/S0169-1317(01)00067-9

    Article  Google Scholar 

  34. 34.

    Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2020) Development of emulsion films based on bovine gelatin-nano chitin-nano ZnO for cake packaging. Food Sci Nutr 8(2):1303–1312. https://doi.org/10.1002/fsn3.1424

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sato H, Ashida T, Kohara Y, Yui M, Sasaki N (1992) Effect of dry density on diffusion of some radionuclides in compacted sodium bentonite. J Nucl Sci Technol 29(9):873–882. https://doi.org/10.1080/18811248.1992.9731607

    CAS  Article  Google Scholar 

  36. 36.

    Flores-Hernández MÁ, Torres-Rendón JG, Jiménez-Amezcua RM, Lomelí-Ramírez MG, Fuentes-Talavera FJ, Silva-Guzmán JA, Enriquez SG (2017) Studies on mechanical performance of wood–plastic composites: polystyrene-Eucalyptus globulus Labill. BioResources 12(3):6392–6404

    Article  Google Scholar 

  37. 37.

    Giles Jr HF, Mount III EM, Wagner Jr JR (2004) Extrusion: the definitive processing guide and handbook. William Andrew Publishing, Norwich

    Google Scholar 

  38. 38.

    De Moraes JO, Müller CMO, Laurindo JB (2012) Influence of the simultaneous addition of bentonite and cellulose fibers on the mechanical and barrier properties of starch composite-films. Food Sci Technol Int 18(1):35–45. https://doi.org/10.1177/1082013211427622

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Müller CM, Laurindo JB, Yamashita F (2009) Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocoll 23(5):1328–1333. https://doi.org/10.1016/j.foodhyd.2008.09.002

    CAS  Article  Google Scholar 

  40. 40.

    Dias AB, Müller CM, Larotonda FD, Laurindo JB (2010) Mechanical and barrier properties of composite films based on rice flour and cellulose fibers. Lwt-Food Sci Technol 44(2):535–542. https://doi.org/10.1016/j.lwt.2010.07.006

    CAS  Article  Google Scholar 

  41. 41.

    Ramezani H, Behzad T, Bagheri R (2019) Synergistic effect of graphene oxide nanoplatelets and cellulose nanofibers on mechanical, thermal, and barrier properties of thermoplastic starch. Polym Adv Technol 2019:1–13. https://doi.org/10.1002/pat.4796

    CAS  Article  Google Scholar 

  42. 42.

    Monteiro MKS, Dos-Santos FKG, Leite RHL, Aroucha EMM, Vitoriano JO, Oliveira VRL (2018) Hydrophilicity, solubility and optical properties in composite films of gelatin and bentonite clay in its natural form or modified. Mater Sci Forum 912:136–140. https://doi.org/10.4028/www.scientific.net/msf.912.136

    Article  Google Scholar 

  43. 43.

    Wang L, Dong Y, Men H, Tong J, Zhou J (2013) Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocoll 32(1):35–41. https://doi.org/10.1016/j.foodhyd.2012.11.034

    CAS  Article  Google Scholar 

  44. 44.

    Hidalgo-Reyes M, Caballero-Caballero M, Hernández-Gómez LH, Urriolagoitia-Calderón G (2015) Chemical and morphological characterization of Agave angustifolia bagasse fibers. Bot Sci 93(4):807–817. https://doi.org/10.17129/botsci.250

    Article  Google Scholar 

  45. 45.

    Müller CMO, Laurindo JB, Yamashita F (2011) Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind Crop Prod 33(3):605–610. https://doi.org/10.1016/j.indcrop.2010.12.021

    CAS  Article  Google Scholar 

  46. 46.

    Ramos-Filho FG, Mélo TJA, Rabello MS, Silva SML (2005) Thermal stability of nanocomposites based on polypropylene and bentonite. Polym Degrad Stabil 89(3):383–392. https://doi.org/10.1016/j.polymdegradstab.2004.12.011

    CAS  Article  Google Scholar 

  47. 47.

    Huber T, Pang S, Staiger MP (2012) All-cellulose composite laminates. Compos A 43:1738–1745. https://doi.org/10.1016/j.compositesa.2012.04.017

    CAS  Article  Google Scholar 

  48. 48.

    Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. Sustain Eng 3:821–832. https://doi.org/10.1021/acssuschemeneng.Sb00144

    CAS  Article  Google Scholar 

  49. 49.

    Dormanns JW, Weiler F, Schuermann J, Müssig J, Duchemin BJC, Staiger MP (2016) Positive size and scale effects of all-cellulose composite laminates. Compos Part A 85:65–75. https://doi.org/10.1016/j.compositesa.2016.03.010

    CAS  Article  Google Scholar 

  50. 50.

    Sifuentes-Nieves I, Rendón-Villalobos R, Jiménez-Aparicio A, Hildeliza Camacho-Díaz B, Gutiérrez-López GF, Solorza-Feria J (2015) Physical, physico-chemical, mechanical and structural characterization of films based on gelatin/glycerol and carbon nanotubes. Int J Polym Sci 2015:1–8. https://doi.org/10.1021/10.1155/2015/763931

    Article  Google Scholar 

  51. 51.

    Zhuang C, Tao F, Cui Y (2015) Anti-degradation gelatin films crosslinked by active ester based on cellulose. RSC Adv 5:52183–52193. https://doi.org/10.1039/c5ra04808g

    CAS  Article  Google Scholar 

  52. 52.

    Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll 44:172–182. https://doi.org/10.1016/j.foodhyd.2014.09.004

    CAS  Article  Google Scholar 

  53. 53.

    Voon HC, Bhat R, Easa AM, Liong MT, Karim AA (2010) Effect of addition of halloysite nanoclay and SiO2 nanoparticles on barrier and mechanical properties of bovine gelatin films. Food Bioprocess Technol 5(5):1766–1774. https://doi.org/10.1007/s11947-010-0461-y

    CAS  Article  Google Scholar 

  54. 54.

    Ludvik CN, Glenn GM, Klamczynski AP, Wood DF (2007) Cellulose fiber/bentonite clay/biodegradable thermoplastic composites. J Polym Environ 15(4):251–257. https://doi.org/10.1007/s10924-007-0072-5

    CAS  Article  Google Scholar 

  55. 55.

    Zheng JP, Li P, Ma YL, Yao KD (2002) Gelatin/montmorillonite hybrid nanocomposite. I. Preparation and properties. J Appl Polym Sci 86(5):1189–1194. https://doi.org/10.1002/app.11062

    CAS  Article  Google Scholar 

  56. 56.

    Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50. https://doi.org/10.1016/j.foodchem.2017.05.045

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Peña C, De La Caba K, Eceiza A, Ruseckaite R, Mondragon I (2010) Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour Technol 101(17):6836–6842. https://doi.org/10.1016/j.biortech.2010.03.112

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8(2):1893–1908

    Article  Google Scholar 

Download references

Acknowledgements

GIRM would like to thank the CONACyT and BEIFI-IPN for a PhD scholarship, and JSF acknowledges the Instituto Politécnico Nacional of Mexico (COFAA, EDI) and the SNI for financial support. Special thanks go to Mr. Yann Giroux (UL) for invaluable help and support in the experimental work. This work was financed by the projects SIP 20195526 and 20200297.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier Solorza-Feria.

Ethics declarations

Conflict of interest

As the corresponding author of this paper, I declare on behalf of all authors of this work that this manuscript has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Martínez, I.G., Rodrigue, D. & Solorza-Feria, J. Production and characterization of films based on gelatin, agave microfibers and nanoclays. Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03560-w

Download citation

Keywords

  • Gelatin film
  • Agave
  • Bentonite
  • Compression molding
  • Composites
  • Characterization